THE EFFECT OF USING EPOXY RESIN VARIATIONS ON THE VALUE OF COMPRESSIVE STRENGTH, SPLIT STRENGTH, AND ELASTIC MODULUS OF POLYMER MORTARS USING RIVER SAND

Arisia Novita, Elvira Elvira, Eka Priadi, Herwani Herwani

Abstract


The rapid development of physical and infrastructure projects in Indonesia necessitates efficient building materials. Mortar, a standard construction material comprising fine aggregate, water, and cement, has strength, environmental resistance, and flexibility limitations. This study investigates using epoxy resin as a substitute for cement in mortar production. Epoxy resin, a liquid material that hardens into a strong binder, offers potential benefits such as accelerated setting time and increased strength. The research uses river sand as the fine aggregate and varies the epoxy resin content from 5%, 10%, 15%, 20%, and 25% of the material volume. Tests will measure compressive strength, split tensile strength, and modulus of elasticity across different epoxy resin compositions. Results from Tanjung Pura University's Materials and Construction Laboratory in Pontianak indicate that adding epoxy resin significantly improves compressive strength (up to 35.92 MPa at 25% resin) and tensile strength (up to 3.82 MPa at 25% resin). However, adding epoxy resin leads to a decreased modulus of elasticity, indicating increased deformability. This research sheds light on epoxy resin's impact on mortar strength and informs potential applications in concrete repair and construction.


Keywords


Epoxy resin, Mortar production, Compressive strength, Tensile strength, Building materials.

Full Text:

PDF

References


Asteris, P. G., & Mokos, V. G. (2020). Concrete Compressive Strength using Artificial Neural Networks. Neural Computing and Applications, 32(15), 11807-11826.

Aziz, T., Haq, F., Farid, A., Cheng, L., Chuah, L. F., Bokhari, A., ... & Show, P. L. (2023). The Epoxy Resin System: Function and Role Of Curing Agents. Carbon Letters, 1-18.

Beddaa, H., Ouazi, I., Fraj, A. B., Lavergne, F., & Torrenti, J. M. (2020). Reuse Potential of Dredged River Sediments in Concrete: Effect of Sediment Variability. Journal of cleaner production, 265, 121665.

Brząkalski, D., Przekop, R. E., Frydrych, M., Pakuła, D., Dobrosielska, M., Sztorch, B., & Marciniec, B. (2022). Where Ppm Quantities of Silsesquioxanes Make A Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins. Materials, 15(2), 494.

Chai, Q., Huang, S., Wan, F., Wu, F., & Feng, L. (2023). A New Experimental Method to Measure and Calculate the Tensile Strength Of Concrete. Frontiers in Materials, p. 10, 1216747.

Dehghan, A., Maher, M. L. J., & Navarra, M. (2021, May). The Effects of Aggregate Properties on Concrete Mix Design and Behaviour. In Canadian Society of Civil Engineering Annual Conference (pp. 457-468). Singapore: Springer Nature Singapore.

Guo, S. Y., Zhang, X., Chen, J. Z., Mou, B., Shang, H. S., Wang, P., ... & Ren, J. (2020). Mechanical and Interface Bonding Properties of Epoxy Resin Reinforced Portland Cement Repairing Mortar: Construction and Building Materials, 264, 120715.

Kirthika, S. K., & Singh, S. K. (2020). Durability Studies on Recycled Fine Aggregate Concrete. Construction and Building Materials, p. 250, 118850.

Lanzoni, L., Soragni, M., Tarantino, A. M., & Viviani, M. (2016). Concrete Beams Stiffened by Polymer-Based Mortar Layers: Experimental Investigation and modeling. Construction and Building Materials, 105, 321-335.

Lehmann, A., Leifheit, E. F., Gerdawischke, M., & Rillig, M. C. (2021). Microplastics have Shape-and Polymer-Dependent Effects on Soil Aggregation and Organic Matter Loss–An Experimental and Meta-Analytical Approach. Microplastics and Nanoplastics, 1(1), 7.

Liu, P., Zhou, X., Qian, Q., Berto, F., & Zhou, L. (2020). Dynamic splitting tensile properties of concrete and cement mortar. Fatigue & Fracture of Engineering Materials & Structures, 43(4), 757-770.

Małek, M., Łasica, W., Jackowski, M., & Kadela, M. (2020). Effect of Waste Glass Addition as A Replacement for Fine Aggregate on Properties of Mortar. Materials, 13(14), 3189.

Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of Fine Recycled Concrete Aggregates in Concrete: A Critical Review—Journal of Building Engineering, 38, 102196.

Niaki, M. H. (2023). Fracture Mechanics of Polymer Concretes: A review. Theoretical and Applied Fracture Mechanics, 103922.

Omar, H. A., Yusoff, N. I. M., Mubaraki, M., & Ceylan, H. (2020). Effects of Moisture Damage on Asphalt Mixtures. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 600–628.

Pang, B., Yang, C., Wang, P., Tian, L., Mei, B., & Song, X. (2023). Cement-Based Ductile Rapid Repair Material Modified with Self-Emulsifying Waterborne Epoxy. Journal of Building Engineering, 79, 107864.

Qamhia, I. I., Wang, H., Tutumluer, E., & Short, M. (2022). Aggregate Subgrade Improvements Using Quarry By-Product Fines: A Case Study. Transportation Research Record, 2676(8), 386-397.

Radi, K., Jauffrès, D., Deville, S., & Martin, C. L. (2019). Elasticity and Fracture of Brick and Mortar Materials using Discrete Element Simulations. Journal of the Mechanics and Physics of Solids, 126, 101-116.

Rahman, M. U., & Li, J. (2023). Influence of Waste Filler on the Mechanical Properties and Microstructure of Epoxy Mortar. Applied Sciences, 13(11), 6857.

Sikandar, M. A., Mubeen, G., Baloch, Z., El-barbary, A. A., & Hamad, M. (2023). Comparative Study on The Performance ff Photochromic Cement, Epoxy, And Polyester Mortars. Journal of Building Engineering, 70, 106394.

Tee, Z. Y., Yeap, S. P., Hassan, C. S., & Kiew, P. L. (2022). Nano and Non-Nano Fillers in Enhancing Mechanical Properties of Epoxy Resins: A Brief Review. Polymer-Plastics Technology and Materials, 61(7), 709–725.

Xie, Y., Qian, C., Xu, Y., Wei, M., & Du, W. (2022). Effect of Fine Aggregate Type on Early-Age Performance, Cracking Analysis and Engineering Applications of C50 Concrete. Construction and Building Materials, p. 323, 126633.

Xie, Z., Yao, H., Yuan, Q., & Zhong, F. (2023). The Roles of Water-Soluble Polymers in Cement-Based Materials: A Systematic Review. Journal of Building Engineering, 106811.

Yang, L., Liu, G., Gao, D., & Zhang, C. (2021). Experimental Study on Water Absorption of Unsaturated Concrete: w/c Ratio, Coarse Aggregate and Saturation Degree. Construction and Building Materials, p. 272, 121945.

Yu, M., Lu, Q., Cui, Z., Wang, X., Ge, F., & Wang, X. (2020). Siloxane-Epoxy Composite Coatings for Enhanced Resistance to Large Temperature Variations. Progress in Organic Coatings, 139, 105457.

Zou, G., Sun, X., Liu, X., & Zhang, J. (2020). Influence Factors on Using Recycled Concrete Aggregate in Foamed Asphalt Mixtures Based on Tensile Strength and Moisture Resistance. Construction and Building Materials, p. 265, 120363.




DOI: http://dx.doi.org/10.26418/jts.v24i1.67500

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Teknik Sipil Universitas Tanjungpura (JTST)

 

Jurnal Teknik Sipil Universitas Tanjungpura Indexed by :

http://www.mevjournal.com/mevfiles/indexers/04-ipi.png     

ISSN 1412-3576 (print), 2621-8429 (online)

Published by :

Department of Civil Engineering, Faculty of Engineering, Tanjungpura University

Jl. Profesor Doktor H. Hadari Nawawi, Bansir Laut, Pontianak Tenggara, Kota Pontianak Kalimantan Barat Indonesia 78124
Telp./Fax: +0561-740186
Email: jts@untan.ac.id

CP: 081256123030-085245045025

Visitor CounterJurnal Teknik Sipil

In its management and publication, this Civil Engineering Journal collaborates with:

1. Masyarakat Hidrologi Indonesia

2. Forum Studi Transportasi Antar Perguruan Tinggi (FSTPT)

 












 

 

 

 

 

 

  MAPS: