One Step Synthesis of TiO2-Activated Carbon Composite Using Hydrothermal Method with Mass Variation of Activated Carbon

Sutisna Sutisna, Ilma Eka Nur Rokhmawati, Misto Misto, Imam Rofi’i, Tri Mulyono, Siswanto Siswanto, Edy Supriyanto, Edy Wibowo

Abstract


One effort to increase the photocatalytic activity of TiO2 is to immobilize it on the surface of the sorbent material. This study aims to produce TiO2-Activated Carbon (TiO2-AC) composites which have higher photocatalytic activity than TiO2, using a simple method. The synthesis of TiO2-AC  composites was carried out using the hydrothermal method. The synthesis process was initiated by mixing TTIP, ethanol, H2O, and activated carbon with various masses (5 g, 10 g, 15 g, and 20 g). The mixture was then put into a hydrothermal autoclave and heated at 180°C for 12 hours. The material is then washed until the pH is neutral, and then dried. The TiO2-AC composite powder was then calcined at 500°C for 3 hours. Based on the photocatalytic test of the TiO2-AC composite on the degradation of methylene blue compounds, it was shown that composite with a mass variation of 10 g activated carbon (TiO2-AC/10) had the highest photocatalytic activity. FTIR characterization of the sample TiO2-AC/10 showed a shift in the peak wave number of the hydroxyl and carbon groups. Meanwhile, the results of morphological analysis using SEM showed that TiO2 particles had adhered to the AC surface, which was also confirmed by EDX data in the presence of Ti and O elements in the synthesized material. The results of the crystallinity analysis showed that the 100% synthesized TiO2 was the anatase phase with a crystalline size of 1.80−14.14 nm. This study open up opportunities for the development of TiO2-based composite materials for large-scale environmental remediation applications.


Keywords


hydrothermal, mass variation, methylene blue, TiO2-AC composite

Full Text:

PDF

References


Marien, C.B.D., Cottineau, T., Robert, D., dan Drogui, P., TiO2 Nanotube Arrays: Influence of Tube Length on the Photocatalytic Degradation of Paraquat, Applied Catalysis B: Environmental, 194, pp. 1–6, 2016.

Behnajadi, M.A., Alizade, B., dan Modirashahla, N., Synthesis of Mg Doped TiO2 Nanoparticles under Different Conditions and its Photocatalytic Activity, Photochemistry and Photobiology, 87(6), pp. 1308–1314, 2011.

Sutisna, Rokhmat, M., Wibowo, E., Khairurrijal, dan Abdullah, M., Prototype of a Flat-Panel Photoreactor Using TiO2 Nanoparticles Coated on Transparent Granules for the Degradation of Methylene Blue Under Solar Illumination, Sustainable Environment Research, 27, pp. 172–180, 2017.

Yao, X., Zhao, R., Chen, L., Du, J., Tao, C., Yang, F., dan Dong, L., Selective Catalytic Reduction of NOx by NH3 Over CeO2 Supported on TiO2: comparison of Anatase, Brookite, and Rutile, Applied Catalysis B: Environmental, 208, pp. 82–93, 2017.

Fagan, R., McCormack, D.E., Hinder, S., dan Pillai, S.C., Improved High Temperature Stability of Anatase TiO2 Photocatalysts by N, F, P co-Doping, Materials and Design, 96, pp. 44–53, 2016.

Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., dan Batzill, M., Why is Anatase a Better Photocatalyst than Rutile? – Model Studies on Epitaxial TiO2 Films, Scientific Reports, 4, pp. 1–8, 2014.

Choi, H., Khan, S., Choi, J., Dinh, D.T.T., Lee, S.Y., Paik, U., Cho, S.H., dan Kim, S., Synergetic Control of Band Gap and Structural Transformation for Optimizing TiO2 Photocatalysts, Applied Catalysis B: Environmental, 210, pp. 513–521, 2017.

Samsudin, E.M. dan Hamid, S.B.A., Effect of Band Gap Engineering in Anionic-Doped TiO2 Photocatalyst, Applied Surface Science, 391, pp. 326–336, 2017.

Zama, I., Martelli, C., dan Gorni, G., Preparation of TiO2 Paste Starting from Organic Colloidal Suspension for Semi-Transparent DSSC Photo-Anode Application, Materials Science in Semiconductor Processing, 61, pp. 137–144, 2017.

Choi, H., Stathatos, E., dan Dionysiou, D.D., Photocatalytic TiO2 Flms and Membranes for the Development of Efficient Wastewater Treatment and Reuse Systems, Desalination, 202, pp. 199–206, 2017.

Nagarjuna, R., Challagulla, S., Alla, N., dan Ganesan, R., Synthesis and Characterization of Reduced-Graphene Oxide/TiO2/Zeolite-4A: a Bifunctional Nanocomposite for Abatement of Methylene Blue, Materials and Design, 86, pp. 621–626, 2015.

Shi, Kuwahara, Y., An, T., dan Yamashita, H., The Fabrication of TiO2 Supported on Slag-Made Calcium Silicate as Low-Cost Photocatalyst with High Adsorption Ability for the Degradation of Dye Pollutants in Water, Catalysis Today, 281, 21–28, 2017.

Chand Bansal, Roop, dan Meenakshi Goyal, Activated Carbon Adsorpsion, United States of America: Lewis Publisher, 2005.

Silaban, D.P., Sintesis Karbon Aktif dari Arang Tempurung Kelapa Limbah Mesin Boiler sebagai Bahan Penyerap Logam Cd, Cu, dan Pb, Jurnal Dinamika Penelitian Industri, 29(2), pp. 119–127, 2018.

Gawande, R.P. dan Kaware, J., Characterization and Activation of Coconut Shell Activated Carbon, Internasional Journal of Engineering Science Invention, 6(11), pp. 43–49, 2017.

Andronic, L., Enesca, A., Cazan, C., dan Visa M., 2014. TiO2-Active Carbon Composites for Wastewater Photocatalysis, Journal of Sol-Gel Science ang Technology, 71, pp. 396–405, 2014.

Maulidiyah, Wibowo, D., Hikmawati, Salamba, R., dan Nurdin M., Preparation and Characterization of Activated Carbon from Coconut Shell – Doped TiO2 in Water Medium, Oriental Journal of Chemistry, 31(4), pp. 2337–2342, 2015.

Liu, F., Zhang, Ji, Gao, J., Chen, Y., dan Hao, X., Ordered Mesoporous TiO2/Activated Carbon for Adsorption and Photocatalysis of Acid Red 18 Solution, Bioresources, 12(4), pp. 9086–9102, 2017.

Allwar, Harti R., dan Fitri N., Karakterisasi dan Modifikasi Karbon Aktif Tempurung Kelapa Sawit dengan Asam Nitrat untuk Menjerap Logam Besi dan Tembaga dalam Minyak Nilam, Indonesian Journal of Chemical Research, 2(1), pp. 75–83, 2016.

Hartanto, S., dan Ratnawati, Pembuatan Karbon Aktif dari Tempurung Kelapa Sawit dengan Metode Aktivasi Kimia, Jurnal Sains Materi Indonesia, 12(1), pp. 12–16, 2010.

Byrappa, K., dan Adschiri, T., Hydrothermal Technology for Nanotechnology, Progress in Crystal Growth and Characterization of Materials, 53, pp. 117-166, 2007.

Sanchez, C., and Livage, J., Chemical Modification of Alkoxide Precursors, Journal of Non-Crystalline Solids, 100, 65-76, 1988.

Sutisna, Rokhmat, M., Wibowo, E., Khairurrijal, dan Abdullah, M., Coating TiO2 Nanoparticles on the Surface of Transparent Plastic Granules Using Combined Electrostatic and Heating Methods for the Photocatalytic Degradation of Organic Pollutants in Water, Environmental Nanotechnology, Monitoring & Management, 8, pp. 1–10, 2017.

Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., dan Batzill, M., Why is Anatase a Better Photocatalyst than Rutile? – Model Studies on Epitaxial TiO2 Films, Scientific Reports, 4 (4043), pp. 1–8, 2014.

Monshi, Ahmad., Mohammad, R.F., Mohammad, R.M., Modified Scherrer Eqquation to Estimate More Accurately Nano-Crystallite Size Using XRD, World Journal of Nano Science and Engineering, 2, pp. 154−160, 2012.

Zhang, G., Song, A., Duan, Y., dan Zheng, S., Enhanced Photocatalytic Activity of TiO2/Zeolite Composite for Abatement of Pollutans, Microporous and Mesoporous Materials, 255, pp. 61-68, 2018.




DOI: http://dx.doi.org/10.26418/positron.v13i1.59856

Refbacks

  • There are currently no refbacks.


PUBLISHER
Physics Department
Faculty of Mathematics and Natural Sciences
Universitas Tanjungpura

 IN COOPERATION WITH
Physical Society of Indonesia

   

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.