Otomatisasi Pembentukan Class Diagram dengan Pendekatan Metode Pemrosesan Teks dan Algoritma CombineTF

Rosa Delima, Antonius Rachmat Chrismanto

Abstract


Spesifikasi kebutuhan merupakan bagian penting dalam proses rekayasa kebutuhan perangkat lunak. Spesifikasi kebutuhan menjadi penghubung antara system analyst dan programmer yang akan melakukan pengembangan sistem. Proses rekayasa kebutuhan merupakan pekerjaan yang bersifat time consuming dan membutuhkan effort yang besar bagi analis sistem. Pekerjaan analis untuk melakukan rekayasa kebutuhan dapat lebih efisien atau lebih cepat dengan bantuan tool untuk mengotomatisasi proses rekayasa kebutuhan. Pada penelitian ini dilakukan pengembangan spesifikasi kebutuhan berupa class diagram secara otomatis dari data kebutuhan. Penelitian ini bermanfaat untuk membantu analis dalam melakukan spesifikasi kebutuhan. Spesifikasi kebutuhan yang dihasilkan merupakan pengembangan dari Automatic Requirments Engineering Model (AREM). Pembentukan class diagram dilakukan melalui tiga tahapan yaitu pembentukan class diagram dari data kebutuhan, penanganan duplikasi objek pada diagram, dan refinement class diagram. Pembentukan diagram pada tahap pertama dilakukan dengan menggunakan pendekatan pemrosesan teks, sementara itu penanganan duplikasi objek dilakukan menggunakan pendekatan term-frequency (TF) dan gabungan algoritma CombineTF dan Jaro-Winkler. Penelitian ini menggunakan dataset kebutuhan untuk pengembangan sistem informasi koperasi. Penelitian berhasil mengembangkan model untuk otomatisasi pembentukan class diagram. Hasil penelitian menunjukan bahwa penanganan duplikasi objek pada class diagram mampu mengatasi 62,5% duplikasi objek dengan nilai precision 0,94 dan nilai akurasi 0,97 untuk nilai threshold algoritma ≥ 0.8.


Keywords


Requirements Engineering; CombineTF; Class Diagram; AREM

Full Text:

PDF

References


R. Delima, R. Wardoyo, and K. Mustofa, “Automatic Requirements Engineering Model using Goal-Oriented Modelling with Text Pre-Processing Technique,” in Sixth International Conference on Informatics and Computing (ICIC), 2021, pp. 1–8. doi: 10.1109/icic54025.2021.9632980.

R. Delima, Khabib Mustofa, and Anny Kartika Sari, “Automatic Requirements Engineering: Activities, Methods, Tools, and Domains – A Systematic Literature Review,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 3, pp. 564–578, 2023, doi: 10.29207/resti.v7i3.4924.

R. Delima, R. Wardoyo, and K. Mustofa, “Goal-Oriented Requirements Engineering: State of the Art and Research Trend,” JUITA J. Inform., vol. 9, no. 1, pp. 105–114, 2021, doi: 10.30595/juita.v9i1.9827.

R. Delima and J. Purwadi, “GoEliTool for Software Requirements Elicitation using Goal-Oriented Approach,” J. Edukasi dan Penelit. Inform., vol. 8, no. 3, pp. 432–440, 2022.

R. Delima, R. Wardoyo, and K. Mustofa, “Combinetf for Requirements Data Similarity Detection on Arem,” ICIC Express Lett., vol. 16, no. 9, pp. 913–921, 2022, doi: 10.24507/icicel.16.09.913.

I. Sommerville, Software Engineering Ninth Edition, Ninth Edit. United States of America: Addison Wesley, 2011.

E. Agirre et al., “SemEval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation,” in SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings, 2016, pp. 497–511. doi: 10.18653/v1/s16-1081.

R. Cheng, “Semantic Similarity Using Transformers,” Towards Data Science, 2021.

Y. Wang et al., “MedSTS: a resource for clinical semantic textual similarity,” Lang. Resour. Eval., vol. 54, no. 1, pp. 57–72, 2020, doi: 10.1007/s10579-018-9431-1.

G. Soǧancloǧlu, H. Öztürk, and A. Özgür, “BIOSSES: A semantic sentence similarity estimation system for the biomedical domain,” in Bioinformatics, 2017, vol. 33, no. 14, pp. i49–i58. doi: 10.1093/bioinformatics/btx238.

M. A. Hadj Taieb, T. Zesch, and M. Ben Aouicha, “A survey of semantic relatedness evaluation datasets and procedures,” Artif. Intell. Rev., vol. 53, no. 6, pp. 4407–4448, Dec. 2019, doi: 10.1007/s10462-019-09796-3.

A. R. Chrismanto, A. K. Sari, and Y. Suyanto, “Enhancing Spam Comment Detection on Social Media With Emoji Feature and Post-Comment Pairs Approach Using Ensemble Methods of Machine Learning,” IEEE Access, vol. 11, pp. 80246–80265, 2023, doi: 10.1109/ACCESS.2023.3299853.

B. Agarwal, H. Ramampiaro, H. Langseth, and M. Ruocco, “A deep network model for paraphrase detection in short text messages,” Inf. Process. Manag., vol. 54, no. 6, pp. 922–937, 2018, doi: 10.1016/j.ipm.2018.06.005.

W. Yin, H. Schütze, B. Xiang, and B. Zhou, “ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs,” Trans. Assoc. Comput. Linguist., vol. 4, pp. 566–567, Dec. 2016, doi: 10.1162/tacl_a_00244.

W. Bao, W. Bao, J. Du, Y. Yang, and X. Zhao, “Attentive Siamese LSTM Network for Semantic Textual Similarity Measure,” in 2018 International Conference on Asian Language Processing (IALP), Nov. 2018, pp. 312–317. doi: 10.1109/IALP.2018.8629212.

A. Godbole, A. Dalmia, and S. K. Sahu, “Siamese Neural Networks with Random Forest for detecting duplicate question pairs,” in arXiv, Jan. 2018, pp. 1–5.

Z. Yuan and S. Jun, “Siamese Network cooperating with Multi-head Attention for semantic sentence matching,” in 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Oct. 2020, pp. 215–218. doi: 10.1109/DCABES50732.2020.00068.

G. Liu and J. Guo, “Bidirectional LSTM with attention mechanism and convolutional layer for text classification,” Neurocomputing, vol. 337, pp. 325–338, Apr. 2019, doi: 10.1016/j.neucom.2019.01.078.

M. Mansoor, Z. ur Rehman, M. Shaheen, M. A. Khan, and M. Habib, “Deep Learning based Semantic Similarity Detection using Text Data,” Inf. Technol. Control, vol. 49, no. 4, pp. 495–510, Dec. 2020, doi: 10.5755/j01.itc.49.4.27118.

Y. Wang et al., “An opinion spam detection method based on multi-filters convolutional neural network,” Comput. Mater. Contin., vol. 65, no. 1, pp. 355–367, 2020, doi: 10.32604/cmc.2020.09835.

N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3980–3990. doi: 10.18653/v1/D19-1410.

E. Fonseca and J. P. R. Alvarenga, “Wide and deep transformers applied to semantic relatedness and textual entailment,” CEUR Workshop Proc., vol. 2583, no. 1, pp. 68–76, 2020.

M. Hammad, M. Al-Smadi, Q. B. Baker, and S. A. Al-Zboon, “Using deep learning models for learning semantic text similarity of Arabic questions,” Int. J. Electr. Comput. Eng., vol. 11, no. 4, p. 3519, Aug. 2021, doi: 10.11591/ijece.v11i4.pp3519-3528.

W. E. Winkler, “String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage,” 1990. [Online]. Available: http://files.eric.ed.gov/fulltext/ED325505.pdf




DOI: http://dx.doi.org/10.26418/jp.v10i1.72518

Refbacks

  • There are currently no refbacks.