Analisis Segmentasi Leukosit pada Acute Myeloid Leukemia dengan Active Contour Without Edge dan Watershed Distance Transform

Nurcahya Pradana Taufik Prakisya, Yusfia Hafid Aristyagama

Abstract


Acute myeloid leukemia (AML) adalah salah satu tipe kanker darah yang mengakibatkan sumsum tulang tidak dapat menghasilkan sel leukosit jenis myeloid yang matang. Pada dasarnya diagnosa penyakit AML menggunakan basis perhitungan jumlah persentase relatif sel leukosit dalam darah. Kesalahan dalam perhitungan jumlah sel dapat berimbas pada kurang tepatnya diagnosa yang dibuat. Dalam pemrosesan citra apusan darah secara digital, salah satu hal yang masih menjadi kendala adalah sel darah yang saling bersinggungan dan bahkan tumpang tindih. Penelitian ini mengusulkan perpaduan algoritma active contour without edge (ACWE) yang dikombinasikan dengan watershed distance transform (WDT) untuk dapat mengatasi permasalahan objek sel darah yang tumpang tindih. ACWE digunakan untuk melakukan segmentasi objek sel darah berbasis perhitungan inside energy dan outside energy sementara WDT diimplementasikan sebagai algoritma pemisah objek dengan memanfaatkan memanfaatkan transformasi jarak dari setiap piksel ke nilai piksel non-zero terdekat. Hasil penelitian menunjukkan dari total 876 objek sel leukosit, terdapat 734 objek yang dapat disegmentasi dengan baik dan sisanya sebanyak 142 objek masih belum dapat diseparasi dengan tepat. Nilai ini menunjukkan bahwa perpaduan algoritma ACWE dan WDT dapat memisahkan 83,789% objek sel leukosit dari citra AML M1, M2 dan M3.


Keywords


active contour without edge; acute myeloid leukemia; leukosit; object segmentation; watershed distance transform

Full Text:

PDF

References


A. Manish, “Acute Myeloid Leukemia: Review and Current Update,” International Journal of Biochemistry & Physiology, vol. 6, no. 2, 2021, doi: 10.23880/IJBP-16000197.

N. K. P. Sari et al., “Aberrant expression of CD5 in a B-lineage Acute Lymphoblastic Leukemia (ALL): a case report,” Intisari Sains Medis, vol. 12, no. 2, pp. 473–476, Jul. 2021, doi: 10.15562/ism.v12i2.1011.

N. P. T. Prakisya, F. Liantoni, Y. H. Aristyagama, and P. Hatta, “Classification of Acute Myeloid Leukemia Subtypes M1, M2 and M3 Using K-Nearest Neighbor,” Int J Adv Sci Eng Inf Technol, vol. 11, no. 5, pp. 1847–1853, 2021, doi: 10.18517/ijaseit.11.5.9585.

A. Harjoko, T. Ratnaningsih, E. Suryani, Wiharto, S. Palgunadi, and N. P. T. Prakisya, “Classification of acute myeloid leukemia subtypes M1, M2 and M3 using active contour without edge segmentation and momentum backpropagation artificial neural network,” in MATEC Web of Conferences, 2018. doi: 10.1051/matecconf/201815401041.

J. D. Khoury et al., “The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms,” Leukemia, vol. 36, no. 7. Springer Nature, pp. 1703–1719, Jul. 01, 2022. doi: 10.1038/s41375-022-01613-1.

R. Skopek et al., “Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research,” Int J Mol Sci, vol. 24, no. 6, p. 5377, Mar. 2023, doi: 10.3390/ijms24065377.

A. Setiawan, A. Harjoko, T. Ratnaningsih, E. Suryani, Wiharto, and S. Palgunadi, “Classification of cell types in Acute Myeloid Leukemia (AML) of M4, M5 and M7 subtypes with support vector machine classifier,” 2018 International Conference on Information and Communications Technology, ICOIACT 2018, vol. 2018-Janua, no. Cml, pp. 45–49, 2018, doi: 10.1109/ICOIACT.2018.8350822.

N. P. T. Prakisya and A. Setiawan, “A Comparative Study of Digital Image Segmentation Algorithms for Acute Myeloid Leukemia M1 White Blood Cells Images,” Indonesian Journal of Informatics Education, vol. 4, no. 2, 2020.

A. Siddiq Sumi, H. Adi Nugroho, and R. Hartanto, “Global Threshold Using Otsu and Active Contour for Detection of Malaria Parasites in Thick Blood Smear,” BIO Web Conf, vol. 41, p. 04002, 2021, doi: 10.1051/bioconf/20214104002.

E. Suryani, Wiharto, S. Palgunadi, and N. P. T. Prakisya, “Classification of Acute Myelogenous Leukemia (AML M2 and AML M3) using Momentum Back Propagation from Watershed Distance Transform Segmented Images,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2017. doi: 10.1088/1742-6596/801/1/012044.

“Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm,” 2017. [Online]. Available: www.jmss.mui.ac.ir

A. Bell and S. Sallah, The Morphology of Human Blood Cells, 7th ed. Abbott. A Promise for Life, 2005.

S. Agaian, M. Madhukar, and A. T. Chronopoulos, “Automated screening system for acute myelogenous leukemia detection in blood microscopic images,” IEEE Syst J, vol. 8, no. 3, pp. 995–1004, 2014, doi: 10.1109/JSYST.2014.2308452.

[14] N. P. T. Prakisya, F. Liantoni, P. Hatta, Y. H. Aristyagama, and A. Setiawan, “Utilization of K-nearest neighbor algorithm for classification of white blood cells in AML M4, M5, and M7,” Open Engineering, vol. 11, no. 1, pp. 662–668, 2021, doi: 10.1515/eng-2021-0065.

S. M. Lewis, B. Bain, and I. Bates, Dacie and Lewis Practical Haematology. 2006. doi: 10.1016/B0-443-06660-4/X5001-6.

T. F. Chan, B. Yezrielev Sandberg, and L. A. Vese, “Active contours without edges for vector-valued images,” J Vis Commun Image Represent, vol. 11, no. 2, pp. 130–141, 2000, doi: 10.1006/jvci.1999.0442.

Eko Prasetyo, Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab, 1st ed. Yogyakarta: Penerbit Andi, 2012.

W. Burger and M. J. Burge, Digital Image Processing an Algorithmic Introduction Using Java, vol. 24, no. 11. 2016. [Online]. Available: http://www.springer.com/series/3191%0Ahttp://link.springer.com/10.1007/978-1-4471-6684-9%0Ahttp://digital-library.theiet.org/content/journals/10.1049/ep.1978.0474%5Cnhttp://link.springer.com/10.1007/978-1-4471-6684-9

W. M. Fong Amaris, C. Martinez, L. J. Cortés-Cortés, and D. R. Suárez, “Image features for quality analysis of thick blood smears employed in malaria diagnosis,” Malar J, vol. 21, no. 1, Dec. 2022, doi: 10.1186/s12936-022-04064-2.

R. C. Gonzalez and R. E. Woods, Digital Image Processing Third Edition Pearson, Third Edit. Prentice Hall, Pearson, 2008.




DOI: http://dx.doi.org/10.26418/jp.v9i3.67809

Refbacks

  • There are currently no refbacks.