OPTIMASI VENTILASI RUANG DAN PENANGANAN KEBISINGAN BERBASIS SIMULASI

Frengky Benediktus Ola, Maria Dominika Krisna Adya Anindita, Natalia Suwarno, Noor Zakiy Mubarrok, Sinta Dewi Prasetyo

Abstract


Permasalahan kualitas lingkungan ruang dalam adalah pembahasan yang menjadi perhatian pasca COVID-19. Faktor kenyamanan termal menjadi salah satu aspek dengan poin penilaian tertinggi. Pada bangunan sosial mengusahakan ventilasi alami untuk kenyamanan termal adalah prioritas pertama. Tulisan ini membahas pengaruh penerapan strategi-strategi perancangan ventilasi alami pada kecepatan, pergerakan udara ruang potensi kenyaman termal, serta usaha mereduksi kebisingan sebagai kompensasi dari penambahan bukaan, dengan memanfaatkan teknologi simulasi digital pada objek kasus perancangan renovasi bangunan gereja. Metode yang digunakan adalah studi simulasi komputer dengan komparasi hasil terhadap nilai acuan teoretis. Hasil studi menunjukkan strategi ventilasi silang memberikan hasil yang baik pada penghawaan ruangan, namun kombinasi dengan ventilasi atap dan kipas pembuang udara panas memberikan hasil terbaik untuk daerah padat bangunan. Kombinasi pereduksi bising menggunakan material mineral wool pada bukaan dan material akustik ruang dengan koefisien serap rata-rata 0.7 tidak berhasil maksimal menurunkan kebisingan sampai pada standar kuantitatif, namun secara kualitatif sangat berdampak pada persepsi pendengar.

 

SIMULATION STUDY FOR OPTIMIZATION OF SPACE VENTILATION AND NOISE HANDLING

 

The problem of the quality of the indoor environment is a discussion that has become a concern after COVID-19. The termal comfort factor is one of the aspects with the highest rating points. In religious buildings seeking natural ventilation for termal comfort is the priority. This paper discusses the effect of applying natural ventilation design strategies on speed, room air movement potential for termal comfort, and efforts to reduce noise as compensation for the addition of openings by utilizing digital simulation technology on the object of the church building renovation. The method used is a computer simulation study comparing the results to the theoretical reference value. The study results show that the cross-ventilation strategy provides good results in air conditioning. However, the combination of roof ventilation and hot air exhaust fans provides the best results for densely built areas. A combination of noise reduction using mineral wool material in the openings and room acoustic material with an average absorption coefficient of 0.7 did not reduce noise to quantitative standards but qualitatively had a significant impact on the listener's perception.


Keywords


Optimasi; Ventilasi Alami; Kebisingan; Simulasi

Full Text:

PDF

References


Abdullah, A.H., Wang, F. (2012). Design and low energy ventilation solutions for atria in the tropics. Sustain. Cities Soc. 2, 8–28. https://doi.org/10.1016/j.scs.2011.09.002

Al Horr, Y., Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: A review of the literature, Building and Environment, https://doi:10.1016/j.buildenv.2016.06.001

Allard, F. (1998). Natural Ventilation in Buildings: A Design Handbook,

James & James Ltd., London, 1998

Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature. Int. J. Sustain. Built Environ. 5 (1), 1-11.

Banbury, S., Berry, D. (2005). Office noise and employee concentration: Identifying causes of disruption and potential improvements. Ergonomics, 48, 25-37

Clements-Croome, D. (2014). Intelligent buildings: an introduction, Routledge, Oxon

Caciolo, M., Stabat, P., Marchio, D., (2011). Full scale experimental study of single-sided ventilation: Analysis of stack and wind effects. Energy and Buildings 43 (2011) 1765–1773. https://doi:10.1016/j.enbuild.2011.03.019

Cao, S., Zhu, D., & Yang, Y. (2016). Associated relationship between ventilation rates and indoor air quality. RSC Advances, 6, 111427-111435. https://doi.org/10.1039/C6RA22902F.

Cuce, P.M., Cuce, E., Riffffat, SB. (2016). A novel roof type heat recovery panel for low-carbon buildings: an experimental investigation. Energy Build 2016;113:133–8.

Cuce, E., Sher, F., Sadiq, H., Cuce, P. M., Guclu, T., Besir, A. B. (2019). Sustainable ventilation strategies in buildings: CFD research. Sustainable Energy Technologies and Assessments 36 (2019) 100540. https://doi.org/10.1016/j.seta.2019.100540

Egan, M. (1976). Concept in Architectural Acoustic, Prentice-Hall Inc., New-Jersey

Ermann, M. (2015). Architectural acoustics illustrated. John Wiley & Sons, Inc., Hoboken, New Jersey

Frontczak, M., Schiavon, S., Goins, J., Arens, E. A., Zhang, H. P. D., Wargocki, P. (2012). Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. International journal of Indoor Environment and Health.

Gładyszewska-Fiedoruk, K., Gajewski, A. (2012). Effect of wind on stack ventilation performance. Energy and Buildings 51 (2012) 242–247. http://dx.doi.org/10.1016/j.enbuild.2012.05.007

Guo, W., Liu, X., Yuan, X. (2015). Study on natural ventilation design optimization based on CFD simulation for green buildings. Procedia Eng 121, 573–581.

Hesaraki, A., Myhren, J.A., Holmberg, S. (2015). Influence of different ventilation levels on indoor air quality and energy savings: a case study of a single-family house. Sustain. Cities Soc. 19, 165–172. https://doi.org/10.1016/j.scs.2015.08.004.

King, M.-F., Khan, A., Delbosc, N., Gough, H.L., Halios, C., Barlow, J.F., Noakes, C.J. (2017). Modelling urban airflow and natural ventilation using a GPU-based lattice Boltzmann method. Build. Environ. 125, 273–284.

Koenigsberger, O. H., Ingersoll, T. G., Mayhew, A., Szokolay, S. V. (1973). Manual of Tropical Housing and Building, Part one: Climatic Design, Bombay, Orient Longman

Lau, S., Zhang, J., & Tao, Y. (2019). A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus. Building and Environment. https://doi.org/10.1016/J.BUILDENV.2018.11.032.

Li, D., Zheng, Y., Liu, C., Qi, H., Liu, X. (2016). Numerical analysis on termal performance of naturally ventilated roofs with different influencing parameters. Sustain. Cities Soc. 22, 86–93.

Mendell, M. J., Fisk, W. J., Kreiss, K., Levin, H., Alexander, D., Cain, W. S., Girman, J. R., Hines, C. J., Jensen, P. A., Milton, D. K., Rexroat, L. P. & Wallingford, K. M. (2002). Improving the Health of Workers in Indoor Environments: Priority Research Needs for a National Occupational Research Agenda. American Journal of Public Health, 92, 1430-1440.

Lau, S., Zhang, J., & Tao, Y. (2019). A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus. Building and Environment. https://doi.org/10.1016/J.BUILDENV.2018.11.032.

Minichilli, F., Gorini, F., Ascari, E., Bianchi, F., Coi, A., Fredianelli, L.,

Licitra, G., Manzoli, F., Mezzasalma, L., & Cori, L. (2018). Annoyance Judgment and Measurements of Environmental Noise: A Focus on Italian Secondary Schools. International Journal of Environmental Research and Public Health, 15. https://doi.org/10.3390/ijerph15020208.

Omer, A. M. (2008). Renewable building energy systems and passive human comfort solutions. Renew Sustain Energy Rev 2008;12(6):1562–87.

Prakash, D., Ravikumar, P. (2015). Analysis of termal comfort and indoor air flow characteristics for a residential building room under generalized window opening position at the adjacent walls. Int. J. Sustain. Built Environ. 4, 42–57. https://doi.org/10.1016/j.ijsbe.2015.02.003.

Shirzadi, M., Naghashzadegan, M., Mirzaei, P.A. (2018). Improving the CFD modelling ofcross-ventilation in highly-packed urban areas. Sustain. Cities Soc. 37 https://doi.org/10.1016/j.scs.2017.11.020.

Satwiko, P., (2019), Akustika Arsitektural, Andi Publisher

S. de la Torre, Yousif, C. (2014). Evaluation of chimney stack effect in a new brewery using DesignBuilder-EnergyPlus software, 6th International Conference on Sustainability in Energy and Buildings SEB-14, Energy Procedia 62 (2014) 230 – 235, https://doi.org/10.1016/j.egypro.2014.12.384

Yeang, K. (2008). Ecodesign: A manual for ecological design. Wiley, ISBN 978-0470997789




DOI: http://dx.doi.org/10.26418/lantang.v10i2.56886

Refbacks

  • There are currently no refbacks.


 View My Stats

 Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Editorial Office/Publisher Address:
Department of Architecture, Faculty of Engineering, Universitas Tanjungpura Pontianak, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, 78124, Kalimantan Barat, Indonesia.
E-mail address: l[email protected]