EVALUASI PENILAIAN AKSESIBILITAS KOTA SINGKAWANG BERDASARKAN KEPADATAN DALAM GRID

Bontor Jumaylinda Br Gultom, Dian Rahayu Jati, Affrilyno Affrilyno

Abstract


Kepadatan penduduk akan terus bertambah sejalan dengan peningkatan populasi dan kebutuhan tempat tinggal. Kepadatan penduduk di suatu kota dapat menyebabkan ketidaksesuaian antara ruang yang tersedia dengan daya dukung lingkungannya. Perbedaan yang terjadi dapat menyulitkan dalam pengalokasian sumber daya atau bantuan jika terjadi bencana. Saat ini, catatan persebaran penduduk hanya berupa data kepadatan kota atau kabupaten. Data ini tidak dapat menunjukkan secara pasti area dengan kepadatan penduduk yang spesifik. Berkaitan dengan hal tersebut, perlu dilakukan penelitian mengenai persebaran spasial penduduk dan aksesibilitas antar segmen spasial. Penelitian ini bertujuan untuk mengetahui persebaran penduduk pada grid 1 km dan penilaian aksesibilitas di Kota Singkawang. Metodologi yang digunakan dalam penelitian ini adalah metode pemetaan populasi dan space syntax. Penelitian ini melakukan pemetaan kuadran serta analisis korelasi sebagai penilaian aksesibilitas kota. Hasil persebaran penduduk Kota Singkawang menunjukkan kepadatan tertinggi dan terkonsentrasi di Kecamatan Singkawang Barat. Peta kuadran menunjukkan Kota Singkawang memiliki aksesibilitas yang baik. Peta ini dapat digunakan sebagai rekomendasi untuk pengembangan kota. Dengan adanya peta pembagian kuadran, pemerintah dapat mengkonsentrasikan pengembangan dan perbaikan di unit jaringan dengan aksesibilitas rendah terlebih dahulu. Nilai koefisien korelasi 42% dan 19% menunjukkan korelasi positif dan sedang antara distribusi kepadatan dan aksesibilitasnya pada setiap unit grid.


EVALUATION OF SINGKAWANG CITY ACCESSIBILITY ASSESSMENT BASED ON GRID DENSITY


Population density will continue to increase in line with the increase in population and housing needs. The population density in a city can cause a mismatch between available space and the carrying capacity of its environment. Differences can make it challenging to allocate resources or assistance in a disaster. Currently, records of population distribution are only in the form of city or district density data. These data cannot clearly show the area with a specific population density. In this regard, it is necessary to research the population's spatial distribution and accessibility between spatial segments. Data on the spatial distribution of the people and accessibility can be used as a basis for consideration in urban development. This study aims to determine the population distribution on a 1 km grid and assess accessibility in Singkawang City. The methodology used in this research is the population mapping method and space syntax. This study carried out quadrant mapping and correlation analysis to assess city accessibility. City population distribution of Singkawang City results shows the highest density is concentrated in the West Singkawang district. Quadrant map showing Singkawang City has good accessibility. This map can be used as a recommendation for city development. With the quadrant division map, the government can concentrate on development and improvement in network units with low accessibility first. The correlation coefficient values of 42% and 19% indicate a positive and moderate correlation between the density distribution and accessibility on each grid units 


Keywords


Aksesibilitas; Grid; Kepadatan; Populasi; Space Syntax

Full Text:

PDF

References


Al_Sayed, K. (2018). Space Syntax Methodology. University College London.

Bai, Z., Wang, J., Wang, M., Gao, M., & Sun, J. (2018). Accuracy assessment of multi-source gridded population distribution datasets in China. Sustainability (Switzerland), 10(5), 1–15. https://doi.org/10.3390/su10051363

Chang, H. W., & Lee, W. I. (2018). Decoding network patterns for urban disaster prevention by comparing Neihu district of Taipei and Sumida district of Tokyo. MATEC Web of Conferences, 169, 1–13. https://doi.org/10.1051/matecconf/201816901044

Doxsey-Whitfield, E., MacManus, K., Adamo, S. B., Pistolesi, L., Squires, J., Borkovska, O., & Baptista, S. R. (2015). Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4. Papers in Applied Geography, 1(3), 226–234. https://doi.org/10.1080/23754931.2015.1014272

Gunarto, D., Wibowo, H., & Arpan, B. (2010). KAJIAN BANJIR SUNGAI SINGKAWANG. Jurnal Penelitian Universitas Tanjungpura, XX(4), 50–64.

Hillier, B., & Hanson, J. (1984). The Social Logic of Space. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9780511597237

Hillier, B., & Stonor, T. (2010). SPACE SYNTAX - Strategic Urban Design. City Planning Review, Future of Urban Space and Humanity.

Jiang, B., & Claramunt, C. (2002). Integration of space syntax into GIS: New perspectives for urban morphology. Transactions in GIS, 6(3), 295–309. https://doi.org/10.1111/1467-9671.00112

Leasure, D. R., Jochem, W. C., Weber, E. M., Seaman, V., & Tatem, A. J. (2020). National population mapping from sparse survey data: A hierarchical Bayesian modeling framework to account for uncertainty. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24173–24179. https://doi.org/10.1073/pnas.1913050117

Leyk, S., Gaughan, A., Adamo, S., de Sherbinin, A., Balk, D., Freire, S., Rose, A., Stevens, F., Blankespoor, B., Frye, C., Comenetz, J., Sorichetta,

A., MacManus, K., Pistolesi, L., Levy, M., & Tatem, A. (2019). Allocating people to pixels: A review of large-scale gridded population data products and their fitness for use. Earth System Science Data Discussions, June, 1–30. https://doi.org/10.5194/essd-2019-82

Pereira, R. H. M., Holanda, F. R. B. de, Medeiros, V. A. S. de, & Barros, A. P. B. G. (2015). The Use of Space Syntax in Urban Transport Analysis: Limits and Potentials (No. 118; Issue 1630).

Ratner, B. (2009). The correlation coeffi cient : Its values range between + 1 / − 1 , or do they ? 17, 139–142. https://doi.org/10.1057/jt.2009.5

Salvatore, M., Pozzi, F., Ataman, E., Huddleston, B., & Bloise, M. (2005). Mapping global urban and rural population distributions. In Environment and Natural Resources Series (Issue 24).

Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLoS ONE, 16(3 March), 1–23. https://doi.org/10.1371/journal.pone.0249044

Subedi, D. (2016). Explanatory Sequential Mixed Method Design as the Third Research Community of Knowledge Claim. American Journal of Educational Research. SciEP, 4(7), 570–577. https://doi.org/10.12691/education-4-7-10

Tobler, W., Deichmann, U., Gottsegen, J., & Maloy, K. (1997). World population in a grid of spherical quadrilaterals. International Journal of Population Geography, 3(3), 203–225. https://doi.org/10.1002/(sici)1099-1220(199709)3:3<203::aid-ijpg68>3.0.co;2-c

TReNDS, & SDSN. (2020). Leaving no one off the map: A guide for gridded population data for sustainable development. https://static1.squarespace.com/static/5b4f63e14eddec374f416232/t/5eb2b65ec575060f0adb1feb/1588770424043/Leaving+no+one+off+the+map-4.pdf

Van Nes, A., & Yamu, C. (2018). Space Syntax: a Method To Measure Urban Space Related To Social, Economic and Cognitive Factors. The Virtual and the Real in Urban Planning and Design: Perspectives, Practices and Application, January, 136–150. https://www.researchgate.net/publication/313470133_Space_Syntax_a_method_to_measure_urban_space_related_to_social_economic_and_cognitive_factors




DOI: http://dx.doi.org/10.26418/lantang.v10i1.56335

Refbacks

  • There are currently no refbacks.


 View My Stats

 Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Editorial Office/Publisher Address:
Department of Architecture, Faculty of Engineering, Universitas Tanjungpura Pontianak, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, 78124, Kalimantan Barat, Indonesia.
E-mail address: l[email protected]