Prediksi Pasien Pusat Kesehatan Masyarakat Menggunakan Machine Learning

Neni Purwati, Windya Harieska Pramujati, Syakur Syakur, Egi Safitri

Abstract


The fluctuating nature of patient visits makes it difficult for hospital management to plan, so it is important to predict patient visits by community health centers (PusKesMas) based on gender. The purpose of this study is to predict whether patients who come for treatment at the community health center can be served immediately, the supply/stock of drugs can meet the needs of patients and the availability of sufficient medical equipment, so that community health center services improve for the better. Based on good performance in solving the problems that have been formulated, the methods used are Random Forest (RF) and Extreme Gradient Boosting (XGBoost). The programming language used is Python using Google Colab. The stage of separating tain and test data using the scikit-learn train_test_split module with a percentage of 70% for train data and 30% for test data produces an accuracy in RF of 0.69 while in XGBoost it is 0.93. The results of the confusion matrix from XGBoost are true positive (TP), namely data that is predicted correctly and precisely as much as 53, false negative (FN) worth 3, false positive (FP) worth 2 and 1, true negative (TN) worth 40, 4, 1, 46. Meanwhile, the results of the XGBoost classification report model from the weighted Average precision value of 0.93, the recall value of 0.93 and the F1-Score value is also 0.93. These results indicate that the model used has good quality performance, so it is worthy of use. The application carried out is with the XGBoost data classification to assess patient visits in the next 5 years, with a prediction of achieving 93% accuracy.

Keywords


Predicted, Machine Learning, Data Mining, Random Forest, XGboost, PusKesMas

Full Text:

PDF

References


D. Febriyanto and M. R. A. Pangestu, “Pengaruh Artificial Intelligence (Ai) Dan Social Media Dalam Pelaksanaan Pemilu 2024,” Curtina, vol. 4, no. 2, pp. 37–43, 2023.

R. F. Putra et al., Algoritma Pembelajaran Mesin ( Dasar , Teknik , dan Aplikasi ), no. April. Sonpedia Publishing Indonesia, 2024.

N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, pp. 46–56, 2024.

A. A. Saputra, B. N. Sari, and C. Rozikin, “Penerapan Algoritma Extreme Gradient Boosting (Xgboost) Untuk Analisis Risiko Kredit,” J. Ilm. Wahana Pendidik., vol. 10, no. 7, 2024, doi: https://doi.org/10.5281/zenodo.10960080.

J. Asbullah and Samsudin, “Prediksi Harga Cryptocurrency Binance Berdasarkan Informasi Blokchain dengan Menggunakan Algoritma Random Forest,” Media Inform. Budidarma, vol. 8, no. 1, pp. 260–271, 2024, doi: 10.30865/mib.v8i1.7100.

T. R. Nangon and A. D. Alexander, “Prediksi Tahap Awal Penyakit Jantung Menggunakan Algoritma Random Forest (Studi Kasus RSIJ),” Dawatuna J. Commun. Islam. Broadcast., vol. 4, no. 4, pp. 1561–1567, 2024.

H. Wijaya, D. P. Hostiadi, and E. Triandini, “Meningkatkan Prediksi Penjualan Retail Xyz Dengan Teknik Optimasi RandomSearchPada Model Xgboost,” in Prosiding Seminar Hasil Penelitian Informatika dan Komputer (SPINTER), 2024, pp. 829–833.

R. A. H. Winarso, “Prediksi Mahasiswa Drop Out Institut Teknologi Sepuluh Nopember Menggunakan XGBoost dan SHAP Values Berbasis Dashboard Interaktif,” 2024. [Online]. Available: https://repository.its.ac.id/105897/

S. Sabran, A. H. Faradila, and M. Yunus, “Prediksi Jumlah Pengunjung Pasien Rawat Jalan Instalasi Merpati RSUP DR . Kariadi Semarang Tahun 2022- 2024,” J. Kesehat. Tambusai, vol. 4, no. 1, pp. 155–160, 2023.

S. N. Azizah, E. Rachmawati, P. Studi, M. Informasi, K. Politeknik, and N. Jember, “Prediksi Kunjungan Pasien Rawat Jalan Dengan Metode Analisis Trend Linear di RSUD Haji Provinsi Jawa Timur Tahun 2023-2025,” J. Manaj. Dan Adm. Rumah Sakit Indones. ( MARSI ), vol. 8, no. 1, pp. 26–32, 2024.

N. Rahmawati and M. A. Laras, “Prediksi Kunjungan Pasien Rawat Jalan Di RSAU dr. Siswanto LANUD Adi Soemarmo Karanganyar Tahun 2022-2026,” INFOKES J. Ilm. Rekam Medis dan Inform. Kesehat., vol. 13, no. 1, pp. 52–63, 2023.

A. S. Novari and U. K. N. S, “Prediksi Faktor yang Mempengaruhi Hipertensi dengan Metode Data Mining untuk meningkatkan Pelayanan Kesehatan di UPT Puskesmas Ngoro,” Phys. Sci. Life Sci. Eng., vol. 1, no. 2, pp. 1–16, 2024.

F. H. Muzaki and W. J. Pranoto, “Analisis Regresi Linear Dalam Data Mining Untuk Pprediksi Sijil Off Di KSOP Kelas I Samarinda,” J. Ilmu Tek., vol. 1, no. 2, pp. 261–266, 2024.

M. Ahmad, M. A. Ali, M. R. Hasan, F. D. Mobo, and S. I. Rai, Geospatial Machine Learning and the Power of Python Programming: Libraries, Tools, Applications, and Plugins. 2024.

R. S. Sinambela, M. Ula, and A. F. Ulva, “Prediksi Harga Emas Menggunakan Algoritma Regresi Linear Berganda Dan Support Vector Machine ( SVM ) Prediction Gold Price Prediction Using Multiple Linear Regression Algorithm and Support Vector Machine ( SVM ),” Justin(Jurnal Sist. dan Teknol. Inf., vol. 12, no. 2, pp. 253–258, 2024, doi: 10.26418/justin.v12i2.73386.

B. A. Manurung, A. Gea, A. P. Silalahi, and N. Samosir, “Penerapan Algoritma Regresi Linear Untuk Memprediksi Jumlah Wisatawan,” Methosisfo J. Ilm. Sist. Inf., vol. 4, no. 1, pp. 1–9, 2024.

M. T. Astuti, “Analisis Big Data Menggunakan Teknik Machine Learning Untuk Prediksi Pola Perilaku Pengguna,” Duniadata.org, vol. 1, no. 4, pp. 1–15, 2024.

A. S. Nurhikam, R. Syaputra, S. Rohman, S. R. Priyambodo, and N. Agustina, “Deteksi Berita Palsu Pada Pemilu 2024 Dengan Menggunakan Algoritma Random Forest,” DoubleClick J. Comput. Inf. Technol., vol. 7, no. 1, pp. 41–50, 2023.

A. Fatunnisa and H. Marcos, “Prediksi Kelulusan Tepat Waktu Siswa SMK Teknik Komputer Menggunakan Algoritma Random Forest Prediction of On-Time Graduation for Computer Engineering Vocational School Students Using the Random Forest Algorithm,” J. Manaj. Inform., vol. 14, no. 1, pp. 101–111, 2024.

M. F. R. Aditya, N. Lutvi, and U. Indahyanti, “Prediksi Penyakit Hipertensi Menggunakan metode Decision Tree dan Random Forest,” J. Ilm. KOMPUTASI, vol. 23, no. 1, pp. 9–16, 2024.

H. Nicholas and J. Benedict, “Implementasi Machine Learning Untuk Prediksi Harga Rumah Menggunakan Algoritma Random Forest,” Comput. J. Comput. Sci. Inf. Syst., vol. 8, no. 1, pp. 50–61, 2024.

A. Choudhury, A. Mondal, and S. Sarkar, “Searches for the BSM scenarios at the LHC using decision tree based machine learning algorithms: A comparative study and review of Random Forest, Adaboost, XGboost and LightGBM frameworks,” arXiv Prepr., 2024, doi: https://doi.org/10.48550/arXiv.2405.06040.

M. Salsabil, N. L. Azizah, and A. Eviyanti, “Implementasi Data Mining dalam Melakukan Prediksi Penyakit Diabetes Menggunakan Metode Random Forest dan Xgboost Pendahuluan,” J. Ilm. KOMPUTASI, vol. 23, no. 1, pp. 51–58, 2024, doi: http://dx.doi.org/10.32409/jikstik.23.1.3507.

P. K. Sari and R. R. Suryono, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” J. Mnemon., vol. 7, no. 1, pp. 31–39, 2024.

R. N. Alifah et al., “Perbandingan Metode Tree Based Classification untuk Masalah Klasifikasi Data Body Mass Index,” Indones. J. Math. Nat. Sci., vol. 47, no. 1, pp. 49–65, 2024.

W. Nugraha and M. Syarif, “Teknik Weighting untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Churn Menggunakan XGBoost, LightGBM, dan CatBoost,” Techno.COM, vol. 22, no. 1, pp. 97–108, 2023.

W. Nugraha, “Prediksi penyakit jantung cardiovascular menggunakan model algoritma klasifikasi,” J. SIGMATA, vol. 9, no. 2, pp. 78–84, 2021.

B. Jange, “Prediksi Harga Saham Bank BCA Menggunakan XGBoost,” Arbitr. J. Econ. Account., vol. 3, no. 2, pp. 231–237, 2022, doi: 10.47065/arbitrase.v3i2.495.

G. A. Putratama, S. M. Fahreza, and Y. R. Ramandhani, “Evaluasi Komparatif Metode Machine Learning Untuk Memprediksi Perubahan Harga Saham,” ANTIVIRUS J. Ilm. Tek. Inform., vol. 17, no. 2, pp. 278–285, 2024.

Annisa Aulia Lestari, L. C. Agatha, and A. Desiani, “Analisis Perbandingan Klasifikasi Penyakit Jantung Menggunakan Algoritma Naïve Bayes dan Algoritma Logistic Regression,” J. Rekayasa Elektro Sriwij., vol. 5, no. 2, pp. 82–90, 2024, doi: https://doi.org/10.36706/jres.v5i2.104.

Z. Shao, M. N. Ahmad, and A. Javed, “Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface,” Remote Sens., vol. 16, no. 4, 2024.

I. Jayanto and B. Benisius, “Analisis Perbandingan Algoritma Decision Tree untuk Prediksi Karyawan dengan Potensi Atrisidi PT. XYZ,” FAHMA –Jurnal Inform. Komputer, Bisnis dan Manaj., vol. 22, no. 1, pp. 49–59, 2024.

R. Rofik, R. Aulia, K. Musaadah, S. S. F. Ardyani, and A. A. Hakim, “The Optimization of Credit Scoring Model Using Stacking Ensemble Learning and Oversampling Techniques,” JOISER (Journal Inf. Syst. Explor. Res., vol. 2, no. 1, pp. 11–20, 2014.




DOI: http://dx.doi.org/10.26418/justin.v12i3.80135

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JUSTIN (Jurnal Sistem dan Teknologi Informasi)

ara komputer
View My Stats

Creative Commons License
All article in Justin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License