Analisis Struktur Terbaik Neural Network dengan Algoritma Backpropagation dalam Memprediksi Indeks Kandungan Sulfida (SO2) di Ibu Kota Jakarta
Abstract
Polusi udara merupakan masalah lingkungan yang umum terjadi di kota-kota besar di tanah air, tidak terkecuali Ibu Kota Jakarta. Tingginya jumlah penduduk di Jakarta menyebabkan konsentrasi polusi udara semakin tinggi karena peningkatan jumlah kendaraan. Kondisi ini diperburuk dengan banyaknya limbah yang dihasilkan oleh pabrik dari berbagai industri. Sulfida (SO2) merupakan salah satu polutan dengan konsentrasi tertinggi di Jakarta dengan total beban emisi sebesar 19.7 kton. Oleh karena itu, prediksi indeks kandungan SO2, merupakan isu penelitian yang penting karena zat SO2 dapat berdampak terhadap berbagai faktor, seperti lingkungan, pertanian, dan kesehatan. Tujuan dari penelitian ini adalah menemukan model terbaik dalam melakukan prediksi SO2 di Jakarta menggunakan Artificial Neural Network (ANN). Jenis algoritma ANN yang digunakan adalah backpropagation. Lebih lanjut, model prediksi dibangun dan dibandingkan berdasarkan tiga fungsi aktivasi dan skema pembagian data yang berbeda untuk memperoleh struktur atau arsitektur model ideal dengan tujuan mengoptimalkan hasil prediksi. Model dievaluasi menggunakan nilai Mean Absolute Percentage Error (MAPE) terkecil. Hasil penelitian menunjukkan bahwa model terbaik untuk prediksi indeks kandungan SO2 adalah model yang menerapkan fungsi aktivasi Tanh dengan skema pembagian data 90% data pelatihan dan 10% data pengujian. Model tersebut memperoleh nilai MAPE sebesar 15.87412%, dan akurasi sebesar 84.12588%. Hal ini mengindikasikan bahwa model memiliki tingkat akurasi yang cukup baik dalam memprediksi indeks kandungan SO2 di Ibu Kota Jakarta dan dapat dijadikan sebagai pendekatan alternatif dalam meningkatkan efektivitas pengendalian SO2.
Keywords
Full Text:
PDFReferences
S. Aswatha et al., “Smart air pollution monitoring system,” Glob. Nest J., vol. 25, no. 3, pp. 125–129, 2023, doi: 10.30955/gnj.004396.
M. A. Fath, “Pengaruh Kualitas Udara dan Kondisi Iklim terhadap Perekonomian Masyarakat (Literature Review),” Media Gizi Kesmas, vol. 10, no. 2, p. 329, 2021, doi: 10.20473/mgk.v10i2.2021.329-342.
K. Kumar and B. P. Pande, “Air pollution prediction with machine learning: a case study of Indian cities,” Int. J. Environ. Sci. Technol., vol. 20, no. 5, pp. 5333–5348, 2023, doi: 10.1007/s13762-022-04241-5.
A. N. Anggraini, N. K. Ummah, Y. Fatmasari, and K. F. Hayati Holle, “Air Quality Forecasting in DKI Jakarta Using Artificial Neural Network,” Matics, vol. 14, no. 1, pp. 1–5, 2022, doi: 10.18860/mat.v14i1.13863.
N. S. Darmanto and A. Sofyan, “Analisis Distribusi Pencemar Udara No2, So2, Co, Dan O2 Di Jakarta Dengan Wrf-Chem,” J. Teh. Lingkung., vol. 18, no. 1, pp. 54–64, Apr. 2012, doi: 10.5614/jtl.2012.18.1.6.
T. Handhayani, “An integrated analysis of air pollution and meteorological conditions in Jakarta,” Sci. Rep., vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-32817-9.
P. Lestari, S. Damayanti, and M. K. Arrohman, “Emission Inventory of Pollutants (CO, SO2, PM2.5, and NOX) in Jakarta Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2020. doi: 10.1088/1755-1315/489/1/012014.
Masito A, “Analisis Risiko Kualitas Udara Ambien (No2 Dan So2) Dan Gangguan Pernapasan Pada Masyarakat Di Wilayah Kalianak Surabaya,” J. Kesehat. Lingkung., vol. 10, no. 4, pp. 394–401, 2018.
N. Eliyati, M. Rahmayani, S. Wijaya, D. A. Zayanti, E. S. Kresnawati, and Y. Resti, “Prediction of Air Quality Index Using Decision Tree With Discretization,” Indones. J. Eng. Sci., vol. 3, no. 3, pp. 061–067, 2022, doi: 10.51630/ijes.v3i3.82.
A. S. Bharatpur, “A Literature Review on Time Series Forecasting Methods.,” 2022.
H. Liu, G. Yan, Z. Duan, and C. Chen, “Intelligent modeling strategies for forecasting air quality time series: A review,” Applied Soft Computing, vol. 102. 2021. doi: 10.1016/j.asoc.2020.106957.
R. Qamar and B. A. Zardari, “Artificial Neural Networks - An overview,” Mesopotamian Journal of Computer Science, vol. 2023. pp. 130–139, 2023. doi: 10.58496/mjcsc/2023/015.
J. T. Hardinata, M. Zarlis, E. B. Nababan, D. Hartama, and R. W. Sembiring, “Modification of Learning Rate with Lvq Model Improvement in Learning Backpropagation,” in Journal of Physics: Conference Series, 2017. doi: 10.1088/1742-6596/930/1/012025.
A. W. Putri, “Implementasi Artificial Neural Network (ANN) Backpropagation Untuk Klasifikasi Jenis Penyakit Pada Daun Tanaman Tomat,” MATHunesa J. Ilm. Mat., vol. 9, no. 2, pp. 344–350, 2021, doi: 10.26740/mathunesa.v9n2.p344-350.
W. Setiawan, A. Barokah, and Mula’ab, “Rainfall Prediction Using Backpropagation with Parameter Tuning,” MATEC Web Conf., vol. 372, p. 07003, 2022, doi: 10.1051/matecconf/202237207003.
H. Maleki, A. Sorooshian, G. Goudarzi, Z. Baboli, Y. Tahmasebi Birgani, and M. Rahmati, “Air pollution prediction by using an artificial neural network model,” Clean Technol. Environ. Policy, vol. 21, no. 6, pp. 1341–1352, 2019, doi: 10.1007/s10098-019-01709-w.
S. Agarwal et al., “Air quality forecasting using artificial neural networks with real-time dynamic error correction in highly polluted regions,” Sci. Total Environ., vol. 735, 2020, doi: 10.1016/j.scitotenv.2020.139454.
M. A. Hamdan, M. F. B. Ata, and A. H. Sakhrieh, “Air Quality Assessment and Forecasting Using Neural Network Model,” J. Ecol. Eng., vol. 22, no. 6, pp. 1–11, 2021, doi: 10.12911/22998993/137444.
M. Joy, D. Viñas, B. D. Gerardo, and R. P. Medina, “Forecasting PM 2.5 and PM 10 Air Quality Index using Artificial Neural Network,” 2022. [Online]. Available: http://journalppw.com
S. Sachdeva, H. Singh, S. Bhatia, and P. Goswami, “An integrated framework for predicting air quality index using pollutant concentration and meteorological data,” Multimed. Tools Appl., 2023, doi: 10.1007/s11042-023-17432-0.
G. Grolemund, Data Wrangling with R, no. January 2015. 2016. [Online]. Available: https://www.oreilly.com/library/
H. Kang, “The prevention and handling of the missing data,” Korean Journal of Anesthesiology, vol. 64, no. 5. pp. 402–406, 2013. doi: 10.4097/kjae.2013.64.5.402.
D. Singh and B. Singh, “Investigating the impact of data normalization on classification performance,” Appl. Soft Comput., vol. 97, 2020, doi: 10.1016/j.asoc.2019.105524.
I. Izonin, R. Tkachenko, N. Shakhovska, B. Ilchyshyn, and K. K. Singh, “A Two-Step Data Normalization Approach for Improving Classification Accuracy in the Medical Diagnosis Domain,” Mathematics, vol. 10, no. 11, 2022, doi: 10.3390/math10111942.
G. Aksu, C. O. Guzeller, and M. T. Eser, “The Effect of the Normalization Method Used in Different Sample Sizes on the Success of Artificial Neural Network Model,” Int. J. Assess. Tools Educ., vol. 6, no. 2, 2019, doi: 10.21449/ijate.479404.
A. Ambarwari, Q. J. Adrian, and Y. Herdiyeni, “Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 117–122, 2020, [Online]. Available: http://jurnal.iaii.or.id
Gde Agung Brahmana Suryanegara, Adiwijaya, and Mahendra Dwifebri Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 114–122, 2021, doi: 10.29207/resti.v5i1.2880.
S. Sinsomboonthong, “Performance Comparison of New Adjusted Min-Max with Decimal Scaling and Statistical Column Normalization Methods for Artificial Neural Network Classification,” Int. J. Math. Math. Sci., vol. 2022, 2022, doi: 10.1155/2022/3584406.
V. R. Joseph and A. Vakayil, “SPlit: An Optimal Method for Data Splitting,” Technometrics, vol. 64, no. 2, pp. 166–176, 2022, doi: 10.1080/00401706.2021.1921037.
V. R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data Min., vol. 15, no. 4, pp. 531–538, 2022, doi: 10.1002/sam.11583.
H. Sildir, S. Sarrafi, and E. Aydin, “Optimal artificial neural network architecture design for modeling an industrial ethylene oxide plant,” Comput. Chem. Eng., vol. 163, 2022, doi: 10.1016/j.compchemeng.2022.107850.
N. Alifiah, D. Kurniasari, Amanto, and Warsono, “Prediction of COVID-19 Using the Artificial Neural Network (ANN) with K-Fold Cross-Validation,” J. Inf. Syst. Eng. Bus. Intell., vol. 9, no. 1, pp. 16–27, 2023, doi: 10.20473/jisebi.9.1.16-27.
D. S. Putra, M. Azmi, Muslikhin, and W. Purwanto, “ANN Activation Function Comparative Study for Sinusoidal Data,” in Journal of Physics: Conference Series, 2022. doi: 10.1088/1742-6596/2406/1/012029.
M. Meng and C. Song, “Daily photovoltaic power generation forecasting model based on random forest algorithm for north China in winter,” Sustain., vol. 12, no. 6, 2020, doi: 10.3390/su12062247.
E. Vivas, H. Allende-Cid, and R. Salas, “A systematic review of statistical and machine learning methods for electrical power forecasting with reported mape score,” Entropy, vol. 22, no. 12. pp. 1–24, 2020. doi: 10.3390/e22121412.
DOI: https://doi.org/10.26418/justin.v12i2.76166
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JUSTIN (Jurnal Sistem dan Teknologi Informasi)
View My Stats

All article in Justin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License