Analisis Sentimen Berbasis Aspek pada EDOM Pembelajaran Menggunakan Metode CNN dan Word2vec

Muhammad Irfani, Siti Khomsah

Abstract


Penelitian ini secara khusus mengeksplorasi analisis sentimen berbasis aspek pada Evaluasi Dosen Oleh Mahasiswa (EDOM) di Institut Teknologi Telkom Purwokerto (ITTP) dengan jumlah dataset sebanyak 5116. Dengan menerapkan metode Convolutional Neural Network (CNN) dan Word2Vec, tujuan utama penelitian adalah mengidentifikasi aspek-aspek yang muncul dalam sentimen opini mahasiswa terkait EDOM ITTP. Selain itu, penelitian ini berupaya mengevaluasi akurasi model klasifikasi sentimen berbasis aspek menggunakan kombinasi CNN dan Word2Vec, confussion matrix digunakan untuk mengukur tingkat akurasi model. Proses penelitian melibatkan penerapan teknik oversampling untuk mengatasi ketidakseimbangan data pada kelas sentimen dengan jumlah data. Dalam menanggulangi permasalahan tersebut, variasi metode oversampling, seperti SMOTE, Random Oversampling, ADASYN, SMOTE-NC, dan Borderline SMOTE, diimplementasikan. Hasil penelitian menunjukkan peningkatan signifikan dalam akurasi model CNN setelah menerapkan algoritma oversampling, mengukuhkan keberhasilan implementasi sentimen berbasis aspek pada EDOM ITTP. Penelitian ini memberikan kontribusi berharga dalam pemahaman dan pengembangan analisis sentimen, terutama dalam konteks pembelajaran, dengan mempertimbangkan aspek-aspek spesifik dalam opini mahasiswa. Temuan ini dapat menjadi dasar bagi perkembangan lebih lanjut dalam meningkatkan pengalaman evaluasi dosen oleh mahasiswa di lingkungan pendidikan tinggi.

Keywords


Deep Learning; Neural Network; Oversampling

Full Text:

PDF

References


B. Liu and L. Zhang, "A Survey of Opinion Mining and Sentiment Analysis," in Mining Text Data, C. C. Aggarwal and C. Zhai, Eds. Boston, MA: Springer US, 2012, pp. 415–463.

M. A. Rahman, H. Budianto, and E. I. Setiawan, "Aspect Based Sentiment Analysis Opini Publik Pada Instagram dengan Convolutional Neural Network," INSYST, vol. 1, no. 2, pp. 50–57, Dec. 2019.

J. S. R. S. W. Wijaya Arya, "Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101," JURNAL TEKNIK ITS, vol. 5, 2016.

L. A. Andika and P. A. N. Azizah, "Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier," 2019.

D. I. Af et al., "Pengaruh Parameter Word2Vec terhadap Performa Deep Learning pada Klasifikasi Sentimen," vol. 6, 2021.

P. R. Amalia and E. Winarko, "Aspect-Based Sentiment Analysis on Indonesian Restaurant Review Using a Combination of Convolutional Neural Network and Contextualized Word Embedding," IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, p. 285, Jul. 2021.

C. A. Bahri and L. H. Suadaa, "Aspect-Based Sentiment Analysis in Bromo Tengger Semeru National Park Indonesia Based on Google Maps User Reviews," IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 17, p. 79, Feb. 2023.

D. T. Hermanto, A. Setyanto, and E. T. Luthfi, "Algoritma LSTM-CNN untuk Sentimen Klasifikasi dengan Word2vec pada Media Online LSTM-CNN Algorithm for Sentiment Clasification with Word2vec On Online Media," Citec Journal, vol. 8, pp. 64–77, 2021.

A. Pambudi and S. Suprapto, "Effect of Sentence Length in Sentiment Analysis Using Support Vector Machine and Convolutional Neural Network Method," IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, p. 21, Jan. 2021.

E. Utami, "OPTIMIZING SENTIMENT ANALYSIS OF PRODUCT REVIEWS ON MARKETPLACE USING A COMBINATION OF PREPROCESSING TECHNIQUES, WORD2VEC, AND CONVOLUTIONAL NEURAL NETWORK OPTIMISASI ANALISIS SENTIMEN ULASAN PRODUK PADA MARKETPLACE DENGAN KOMBINASI TEKNIK PREPROCESSING, WORD2VEC, DAN CONVOLUTIONAL NEURAL NETWORK," Jurnal Teknik Informatika (JUTIF), vol. 4, pp. 101–107, 2023.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient Estimation of Word Representations in Vector Space," Jan. 2013.

F. P. Rachman, H. Santoso, and A. History, "Jurnal Teknologi dan Manajemen Informatika Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing," Jurnal Teknologi dan Manajemen Informatika, vol. 7, pp. 103–112, 2021.

I. Bakti and M. Firdaus, "Arsitektur CNN InceptionResNet-V2 Untuk Pengelompokan Pneumonia Chest X-Ray," jukomtek, pp. 35–42, Jan. 2023, doi: 10.58290/jukomtek.v1i2.66.

R. Nursyahfitri, C. Rozikin, and R. I. Adam, "Penerapan Metode SMOTE dalam Klasifikasi Daerah Rawan Banjir di Karawang Menggunakan Algoritma Naive Bayes," justin, vol. 10, no. 4, p. 339, Dec. 2022, doi: 10.26418/justin.v10i4.46935.

F. A. Ramadhan, S. H. Sitorus, and T. Rismawan, "Penerapan Metode Multinomial Naïve Bayes untuk Klasifikasi Judul Berita Clickbait dengan Term Frequency - Inverse Document Frequency," justin, vol. 11, no. 1, p. 70, Jan. 2023, doi: 10.26418/justin.v11i1.57452.

N. Cahyana, S. Khomsah, and A. S. Aribowo, "Improving Imbalanced Dataset Classification Using Oversampling and Gradient Boosting," in 2019 5th International Conference on Science in Information Technology (ICSITech), Yogyakarta, Indonesia: IEEE, Oct. 2019, pp. 217–222, doi: 10.1109/ICSITech46713.2019.8987499.

A. Viloria, O. B. P. Lezama, and N. Mercado-Caruzo, "Unbalanced data processing using oversampling: Machine Learning," Procedia Computer Science, vol. 175, pp. 108–113, 2020.

N. Cahyana, S. Khomsah, and A. S. Aribowo, "Improving Imbalanced Dataset Classification Using Oversampling and Gradient Boosting," in 2019 5th International Conference on Science in Information Technology (ICSITech), Yogyakarta, Indonesia: IEEE, Oct. 2019, pp. 217–222, doi: 10.1109/ICSITech46713.2019.8987499.

H. He, Y. Bai, E. A. Garcia, and S. Li, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, pp. 1322–1328, Jun. 2008.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling Technique," jair, vol. 16,

pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.

N. Cahyana, S. Khomsah, and A. S. Aribowo, "Improving Imbalanced Dataset Classification Using Oversampling and Gradient Boosting," in 2019 5th International Conference on Science in Information Technology (ICSITech), Yogyakarta, Indonesia: IEEE, Oct. 2019, pp. 217–222, doi: 10.1109/ICSITech46713.2019.8987499.

M. Mukherjee and M. Khushi, "SMOTE-ENC: A Novel SMOTE-Based Method to Generate Synthetic Data for Nominal and Continuous Features," ASI, vol. 4, no. 1, p. 18, Mar. 2021, doi: 10.3390/asi4010018.




DOI: http://dx.doi.org/10.26418/justin.v12i3.75610

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JUSTIN (Jurnal Sistem dan Teknologi Informasi)

ara komputer
View My Stats

Creative Commons License
All article in Justin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License