Sentiment on Public Trust Using the NLP Rule Based Method

Evasaria Magdalena Sipayung


Government policy is understood from suggestions that will be achieved or regulated where the target is the public in the sense of society and the public interest, then government policy can be categorized as public policy. The policies implemented by the Government in 2022 include the stages of eliminating Premium and Pertalite fuel oil, increasing the price of non-subsidized LPG gas, the application of BPJS standard classes, and fishing is limited through a quota system. In this research, government policy sentiment analysis was carried out using the NLP (Natural Language Processing) method on tweet data. There are three policies that serve as a reference for public trust, namely the "Pertalite Increase", "BPJS Class" and "Non-Subsidized LPG" policies. The most negative sentiment was obtained during the "Increase in Pertalite" policy where there were 73.4% of negative tweets criticizing the government. The "BPJS Class" policy also received negative sentiment with the presentation of negative tweets of 43.4% complaining about the new policy of increasing BPJS class prices and the BPJS flow process. However, for the “Non-Subsidized LPG” policy, the results of the sentiment analysis showed that 52.9% of tweets agreed with the policy even with very good association words. The social media phenomenon is called a "buzzer" because 35% of positive tweets come from accounts whose credibility is questionable. The sentiment analysis model has shown that the model is very good with an accuracy of 86.3% which can represent that the events depicted in the Twitter social media data are in accordance with the reality that occurred.


government policy; sentiment analysis; NLP; rule based; comment

Full Text:



Kementerian Energi dan Sumber Daya Mineral, "Soal Pembatasan BBM, Kebijakan Pemerintah Tidak Akan Memberatkan Rakyat",, tanggal akses 1 Oktober 2022.

Ni Putu Gita Naraswati, Ni Putu Gita Naraswati, dkk., " Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification", SISTEMASI: Jurnal Sistem Informasi Volume 10, Nomor 1, Januari 2021: 222-238, ISSN:2302-8149.

Muhamad Rizki Fajr, "Analisis Sentimen Publik terhadap Program Kebijakan Pemerintah untuk Mengembangkan Pendidikan Menggunakan Metode Multinomial Naive Bayes", Tesis Magister Ilmu Komputer, 2020.

N. Chadha, R. C. Gangwar, and R. Bedi, “Current Challenges and Application of Speech Recognition Process using Natural Language Processing: A Survey,” Int. J. Comput. Appl., vol. 131, no. 11, pp. 28–31, 2015, doi: 10.5120/ijca2015907471.

Mohammad Farid Naufal, Selvia Ferdiana Kusuma, "Analisis Sentimen pada Media Sosial Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat Berbasis Deep Learning", JEPIN (Jurnal Edukasi dan Penelitian Informatika), Vol. 8 No. 1 April 2022.

Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., & Stoyanov, V., “SemEval-2016 task 4: Sentiment analysis in Twitter”, 2016.

Rajput, A., “Natural Language Processing, Sentiment Analysis and Clinical Analytics”, 2019.

Hennie Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine. Information System Development (ISD), Vol. 5 No. 2, Juli 2020.

Aldi Nurzahputra, Much Aziz Muslim, “Analisis Sentimen pada Opini Mahasiswa Menggunakan Natural Language Processing”, Prosiding Seminar Nasional Ilmu Komputer (SNIK 2016).

Evasaria M. Sipayung, dkk, "Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier", Jurnal Sistem Informasi (JSI), VOL. 8, NO. 1, April 2016.

Siddhartha, B. S., “An Interpretation of Lemmatization and Stemming in Natural Language Processing”, 2021.

Bhustomy Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning”, JBASE Universitas Bunda Mulia Vol. 4 No. 2, pp 16-22, 2021.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Naturallanguage processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12, pp. 2493–2537, 2011.

A. Elmessiry, W. O. Cooper, T. F. Catron, J. Karrass, Z. Zhang, and M. P. Singh, “Triaging Patient Complaints: Monte Carlo Cross-Validation of Six Machine LearningClassifiers”, JMIR Med. Informatics, vol. 5, no. 3, p. e19, 2017, doi:10.2196/medinform.7140.

V. Singh and B. Saini, “An Effective Tokenization Algorithm for Information RetrievalSystems,” pp. 109–119, 2014, doi: 10.5121/csit.2014.4910

A. I. Kadhim, Y. N. Cheah, and N. H. Ahamed, “Text Document Preprocessing andDimension Reduction Techniques for Text Document Clustering,” Proc. - 2014 4th Int.Conf. Artif. Intell. with Appl. Eng. Technol. ICAIET 2014, pp. 69–73, 2015, doi:10.1109/ICAIET.2014.21.

Flach, P., “Performance Evaluation in Machine Learning: The Good, The Bad, The Ugly and The Way Forward”, 2018.



  • There are currently no refbacks.

Copyright (c) 2024 JUSTIN (Jurnal Sistem dan Teknologi Informasi)

ara komputer
View My Stats

Creative Commons License
All article in Justin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License