Pengelompokkan Toko Kaus Termurah E-Commerce Shopee berdasarkan Reputasi Toko Menggunakan Metode Clustering K-Medoids dan K-Means

Lalu Riza Singrapati, Rika Dora, Robert Kurniawan

Abstract


Kaus merupakan salah satu jenis pakaian yang paling diminati saat ini. Terutama setelah hadirnya toko e-commerce yang memudahkan pembeli untuk bertransaksi dengan cepat tanpa harus pergi ke tokonya secara langsung. Banyak toko online yang menawarkan kaus dengan harga yang terjangkau. Namun, pembeli harus selektif dalam melakukan transaksi jual beli melalui e-commerce karena banyaknya risiko yang bisa timbul. Untuk mengatasi hal tersebut, salah satu hal yang dapat dilakukan yaitu mengelompokkan toko pada platform e-commerce Shopee berdasarkan reputasi menggunakan metode K-Means dan K-Medoids. Penelitian ini menggunakan data dari tiga ratus akun toko kaus dengan harga termurah di Shopee. Tahapan dalam penelitian ini meliputi pengumpulan data, preprocessing data, penentuan jumlah cluster optimum, analisis cluster menggunakan K-Means dan K-Medoids, evaluasi model, interpretasi output, dan penarikan Kesimpulan. Berdasarkan hasil evaluasi, diperoleh metode terbaik ialah K-Means dengan k optimum sebanyak tiga cluster. Kemudian, cluster yang direkomendasikan kepada customer ialah cluster pertama.


Keywords


K-Means; K-Medoids; Kaus; Cluster

Full Text:

PDF

References


Išoraitė, M., & Miniotienė, N. (2018). Electronic Commerce: Theory and Practice. 2(2), 73–79. https://doi.org/10.5281/zenodo.1258437

iPrice. 2023. “The Map of E-Commerce in Indonesia”. Diakses 13 Juni 2023. https://iprice.co.id/insights/mapofecommerce/en/

Brydges, T. (2021). Closing the loop on take, make, waste: Investigating circular economy practices in the Swedish fashion industry. Journal of Cleaner Production, 293. https://doi.org/10.1016/j.jclepro.2021.126245

Lu, Y. H., & Zhang, W. T. (2018). The Impact of Topic Factors on Commodity Reviews. Procedia Computer Science, 154, 806–816. https://doi.org/10.1016/j.procs.2019.06.079

Abdelsalam, S., Salim, N., Alias, R. A., & Husain, O. (2020). Understanding Online Impulse Buying Behavior in Social Commerce: A Systematic Literature Review. IEEE Access, 8, 89041–89058. https://doi.org/10.1109/ACCESS.2020.2993671

Oghazi, P., Karlsson, S., Hellström, D., Mostaghel, R., & Sattari, S. (2021). From Mars to Venus: Alteration of trust and reputation in online shopping. Journal of Innovation and Knowledge, 6(4), 197–202. https://doi.org/10.1016/j.jik.2020.06.002

Nanda, P., & Patnaik, S. (2023). A multi-agent coalition-based approach for order fulfilment in e-commerce. Decision Analytics Journal, 7. https://doi.org/10.1016/j.dajour.2023.100227

Hennig-Thurau, T., Malthouse, E. C., Friege, C., Gensler, S., Lobschat, L., Rangaswamy, A., & Skiera, B. (2010). The impact of new media on customer relationships. Journal of Service Research, 13(3), 311–330. https://doi.org/10.1177/1094670510375460

Lv, Z., Jin, Y., & Huang, J. (2018). How do sellers use live chat to influence consumer purchase decision in China? Electronic Commerce Research and Applications, 28, 102–113. https://doi.org/10.1016/j.elerap.2018.01.003

Chen, N., & Yang, Y. (2021). The impact of customer experience on consumer purchase intention in cross-border E-commerce——Taking network structural embeddedness as mediator variable. Journal of Retailing and Consumer Services, 59. https://doi.org/10.1016/j.jretconser.2020.102344

Liu, G., Ji, F., Sun, W., & Sun, L. (2023). Optimization design of short-circuit test platform for the distribution network of integrated power system based on improved K-means clustering. Energy Reports, 9, 716–726. https://doi.org/10.1016/j.egyr.2023.04.319

Wu, Z., Jin, L., Zhao, J., Jing, L., & Chen, L. (2022). Research on Segmenting E-Commerce Customer through an Improved K-Medoids Clustering Algorithm. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/9930613

Sureja, N., Chawda, B., & Vasant, A. (2022). An improved K-medoids clustering approach based on the crow search algorithm. Journal of Computational Mathematics and Data Science, 3, 100034. https://doi.org/10.1016/j.jcmds.2022.100034

El-Khatib, S. A., Skobtsov, Y. A., & Rodzin, S. I. (2021). Comparison of Hybrid ACO-k-means algorithm and Grub cut for MRI images segmentation. Procedia Computer Science, 186, 316-322. https://doi.org/10.1016/j.procs.2021.04.150

Peña, M. (2018). Robust clustering methodology for multi-frequency acoustic data: A review of standardization, initialization and cluster geometry. In Fisheries Research (Vol. 200, pp. 49–60). Elsevier B.V. https://doi.org/10.1016/j.fishres.2017.12.013

Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., & Song, A. (2015). Efficient agglomerative hierarchical clustering. Expert Systems with Applications, 42(5), 2785–2797. https://doi.org/10.1016/j.eswa.2014.09.054

Batool, F., & Hennig, C. (2021). Clustering with the Average Silhouette Width. Computational Statistics and Data Analysis, 158. https://doi.org/10.1016/j.csda.2021.107190

Qi, J., Yu, Y., Wang, L., Liu, J., & Wang, Y. (2017). An effective and efficient hierarchical K-means clustering algorithm. International Journal of Distributed Sensor Networks, 13(8), 1–17. https://doi.org/10.1177/1550147717728627

Zhang, Q., & Couloigner, I. (2005). A New and Efficient K-Medoid Algorithm for Spatial Clustering. In LNCS (Vol. 3482). http://dx.doi.org/10.1007/11424857_20

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. In Journal of Computational and Applied Mathematics (Vol. 20).

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909

Ben Ncir, C. E., Hamza, A., & Bouaguel, W. (2021). Parallel and scalable Dunn Index for the validation of big data clusters. Parallel Computing, 102. https://doi.org/10.1016/j.parco.2021.102751

Azhir, E., Jafari Navimipour, N., Hosseinzadeh, M., Sharifi, A., & Darwesh, A. (2021). An automatic clustering technique for query plan recommendation. Information Sciences, 545, 620–632. https://doi.org/10.1016/j.ins.2020.09.037

Wang, X., & Xu, Y. (2019). An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. IOP Conference Series: Materials Science and Engineering, 569(5). https://doi.org/10.1088/1757-899X/569/5/052024

Baig, M. A., Zaman, Q., Baig, S. A., Qasim, M., Khalil, U., Khan, S. A., Ismail, M., Muhammad, S., & Ali, S. (2021). Regression analysis of hydro-meteorological variables for climate change prediction: A case study of Chitral Basin, Hindukush region. Science of the Total Environment, 793. https://doi.org/10.1016/j.scitotenv.2021.148595

Gómez, J., Pérez-Aradros, B., & Salazar, I. (2022). How to beat early movers: The role of competitive strategy and industry dynamism on followers’ performance in the telecommunications industry. Long Range Planning, 55(5). https://doi.org/10.1016/j.lrp.2022.102244

Guizzardi, A., Ballestra, L. V., & D’Innocenzo, E. (2022). Hotel dynamic pricing, stochastic demand and covid-19. Annals of Tourism Research, 97. https://doi.org/10.1016/j.annals.2022.103495




DOI: https://doi.org/10.26418/justin.v12i1.69067

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JUSTIN (Jurnal Sistem dan Teknologi Informasi)

ara komputer
View My Stats

Creative Commons License
All article in Justin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License