Peningkatan HSV dan Haar-Like Feature pada Aplikasi Identifikasi Kematangan Buah Tomat Berbasis Android

Febri Liantoni, Nurcahya Pradana Taufik Prakisya, Yusfia Hafid Aristyagama

Abstract


Tomat adalah buah yang terkenal karena memiliki banyak nutrisi penting dan bermanfaat seperti antioksidan, vitamin C dan A untuk makanan sehari-hari manusia. Memetik tomat dengan tangan merupakan pekerjaan yang berat dan memakan waktu. Karena itu, untuk mengatasi masalah ini, tomat perlu diambil secara otomatis dengan bantuan teknologi. Baru-baru ini otomatisasi panen buah memperoleh popularitas besar. Untuk memandu robot pemanen mengambil buah dengan benar, penting untuk mendeteksi dan menemukan lokasi buah matang merah dengan benar. Maka dibutuhkan aplikasi untuk identifikasi kematangan buah tomat. Dalam penelitian ini, algoritma pendeteksian tomat matang berdasarkan ruang warna HSV (Hue, Saturation, Value) yang ditingkatkan dengan haar-like feature.  Metode ini diterapakan pada aplikasi berbasis android. Pada tahap pertama, transformasi HSV digunakan untuk menghilangkan latar belakang dan hanya mendeteksi tomat merah. Kemudian operasi morfologis diterapkan untuk memodifikasi buah yang terdeteksi. Hasil penelitian mampu mendeteksi tomat matang merah dengan peningkatan HSV dan haar-like feature.


Keywords


android; haar-like feature; HSV; tomat

Full Text:

PDF

References


Saad, A.M., A. Ibrahim, and N. El-Bialee, “Internal quality assessment of tomato fruits using image color analysis,” Agric. Eng. Int. CIGR J., vol. 18, pp. 339–352, 2016.

Bhowmik, D., K. P. S. Kumar, S. Paswan, and S. Srivastava, “Tomato-a natural medicine and its health benefits,” J. Pharmacogn. Phytochem, vol. 1, pp. 33–43, 2012.

Y. Wei, M. Xu, H. Wu, S. Tu, L. Pan, and K. Tu, “Defense response of cherry tomato at different maturity stages to combined treatment of hot air and Cryptococcus laurentii,” Postharvest Biol. Technol., vol. 117, pp. 177–186, Jul. 2016, doi: 10.1016/j.postharvbio.2016.03.001.

B. Van de Poel et al., “Model-based classification of tomato fruit development and ripening related to physiological maturity,” Postharvest Biol. Technol., vol. 67, pp. 59–67, May 2012, doi: 10.1016/j.postharvbio.2011.12.005.

Q. Xiao, W. Niu, and H. Zhang, “Predicting fruit maturity stage dynamically based on fuzzy recognition and color feature,” in 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), 2015, pp. 944–948.

M. R. Satpute and S. M. Jagdale, “Color, size, volume, shape and texture feature extraction techniques for fruits: a review,” Int. Res. J. Eng. Technol., vol. 3, pp. 703–708, 2016.

S. Arivazhagan, S. S. Shebiah, R.N., Nidhyanandhan, and L. Ganesan, “Fruit recognition using color and texture features,” J. Emerg. Trends Comput. Inform. Sci, vol. 1, pp. 90–94, 2010.

S. Laykin, V. Alchanatis, E. Fallik, and Y. Edan, “Image Processing Algorithms For Tomato Classification,” Trans. ASAE, vol. 45, no. 3, 2002, doi: 10.13031/2013.8838.

F. Liantoni and F. N. Annisa, “Fuzzy K-Nearest Neighbor Pada Klasifikasi Kematangan Cabai Berdasarkan Fitur HSV Citra,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 3, no. 2, Dec. 2018, doi: 10.29100/jipi.v3i2.851.

A. F. Smith, The Tomato in America: Early History, Culture and Cookery. University of Illinois Press, 2001.

S. Yulia Riska and P. Subekti, “Klasifikasi Level Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Multi-SVM,” Dec. 2016. doi: 10.5281/JIMI.V1I1.8.

V. Chernov, J. Alander, and V. Bochko, “Integer-based accurate conversion between RGB and HSV color spaces,” Comput. Electr. Eng., vol. 46, pp. 328–337, 2015, doi: 10.1016/j.compeleceng.2015.08.005.

Z.-H. Li, D. Han, C.-J. Yang, T.-Y. Zhang, and H.-Q. Yu, “Probing operational conditions of mixing and oxygen deficiency using HSV color space,” J. Environ. Manage., vol. 232, pp. 985–992, Feb. 2019, doi: 10.1016/j.jenvman.2018.12.025.

K. B. Shaik, P. Ganesan, V. Kalist, B. S. Sathish, and J. M. M. Jenitha, “Comparative Study of Skin Color Detection and Segmentation in HSV and YCbCr Color Space,” Procedia Comput. Sci., vol. 57, pp. 41–48, 2015, doi: 10.1016/j.procs.2015.07.362.

S.-K. Pavani, D. Delgado, and A. F. Frangi, “Haar-like features with optimally weighted rectangles for rapid object detection,” Pattern Recognit., vol. 43, no. 1, pp. 160–172, Jan. 2010, doi: 10.1016/j.patcog.2009.05.011.

B. Mohamed, A. Issam, A. Mohamed, and B. Abdellatif, “ECG Image Classification in Real time based on the Haar-like Features and Artificial Neural Networks,” Procedia Comput. Sci., vol. 73, pp. 32–39, 2015, doi: 10.1016/j.procs.2015.12.045.

A. Mohamed, A. Issam, B. Mohamed, and B. Abdellatif, “Real-time Detection of Vehicles Using the Haar-like Features and Artificial Neuron Networks,” Procedia Comput. Sci., vol. 73, pp. 24–31, 2015, doi: 10.1016/j.procs.2015.12.044.




DOI: https://doi.org/10.26418/justin.v9i1.42469

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JUSTIN (Jurnal Sistem dan Teknologi Informasi)

ara komputer
View My Stats

Creative Commons License
All article in Justin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License