Hansen lo, Erwin Sutandar, Gatot Setya Budi


Paving blocks, concrete bricks made from cement and sand, are a vital alternative to ground cover. Their extensive, precast nature, water absorption capabilities, affordability, and ease of use contribute to their popularity. However, the additional ingredients, particularly mineral admixtures, hold the potential to enhance these blocks' quality and performance significantly. The mineral admixtures used, such as limestone, quartz sand, and gypsum, are instrumental in improving the performance of paving blocks, offering a promising avenue for further research and application. This research, conducted with meticulous scientific rigor, investigated paving blocks' physical and mechanical properties. Paving block test objects were created using sand, cement, and crushed stone with mineral admixtures. The mineral admixtures used in this experiment, including gypsum, quartz sand, and limestone, were crushed before being used in a stone cruiser machine to make them powder and reactive. Compressive strength test, weat resistance test, volume weight test, water absorption test, and visual inspection were conducted experimentally. The research results, derived from a robust experimental setup, revealed that paving blocks with 10% gypsum additives, 6% quartz sand powder, and limestone powder produced a more excellent compressive strength value than standard paving blocks, values of 36,884 MPa, 37,573 MPa, and 38,950 MPa with a regular paving block compressive strength value of 36,119 MPa followed by a decrease in the percentage of absorption. This suggests that using mineral admixtures at a certain percentage as an additional material can improve the quality of paving blocks. However, it is essential to note that adding too many mineral admixtures can also decrease the strength of the paving block, emphasizing the need for careful application of these materials in construction. These findings provide valuable insights for civil engineers, construction professionals, and researchers in materials science and construction technology, enhancing their understanding of the role of mineral admixtures in paving block strength.


Paving blocks, Mineral admixtures, Compressive strength, Water absorption, Quality improvement.

Full Text:



Alaskar, A., Alshannag, M., & Higazey, M. (2021). Mechanical Properties and Durability of High-Performance Concrete Internally Cured Using Lightweight Aggregates. Construction and Building Materials, 288, 122998.

Badan Standarisasi Nasional. (1987). SNI 03-0028-1987, Ubin Semen Polos. Jakarta.

Badan Standarisasi Nasional. (1990). SNI 03-1968:1990, Metode Pengujian tentang Analisis Saringan Agregat Halus dan Kasar. Jakarta

Badan Standarisasi Nasional. (1990). SNI 03-1969:1990. Metode Pengujian Berat Jenis dan Penyerapan. Air Agregat Kasar. Jakarta.

Badan Standarisasi Nasional. (1990). SNI S-18-1990-03, Spesiflkasi. Bahan Tambahan untuk Beton. Jakarta.

Badan Standarisasi Nasional. (1992). SNI-03 2816-1992, Metode Pengujian Jumlah Bahan Dalam Agregat Yang Lolos Saringan no. 200 (0,075 mm). Jakarta.

Badan Standarisasi Nasional. (1996). SNI-03-0691-1996, Bata Beton (Paving Block). Jakarta.

Badan Standarisasi Nasional. (1998). SNI 03-4804-1998, Metode Pengujian Berat Isi dan Rongga Udara dalam Agregat. Jakarta.

Badan Standarisasi Nasional. (2000). SNI 03-6468-2000, Tata Cara Perencanaan Tinggi Dengan Semen Portland Dengan Abu Terbang. Jakarta.

Badan Standarisasi Nasional. (2008). SNI 1970-2008, Cara Uji Berat Jenisdan Penyerapann Air Agregat Halus. Jakarta.

Badan Standarisasi Nasional. (2008). SNI 2417-2008, Cara Uji Keausan Agregat dengan Mesin Abrasi Los Angeles. Jakarta.

Badan Standarisasi Nasional. (2012). SNI 7656-2012, Tata Cara Pemilian Campuran untuk Beton Normal, Beton Berat, dan Beton Massa. Jakarta.

Badan Standarisasi Nasional. (2014). SNI 2816-2014, Metode Uji Bahan Organik dalam Agregat Halus untuk Beton. Jakarta.

Badan Standarisasi Nasional. (2014). SNI 7064-2014, Semen Portlan Komposit. Jakarta.

Badan Standarisasi Nasional. (2015). SNI 2049-2015, Semen Portland. Jakarta.

Badan Standarisasi Nasional. (2015). SNI 2531-2015, Metode Uji Densitas Semen Hidraulis (ASTM C 188-95 (2003), MOD). Jakarta.

Balapour, M., Zhao, W., Garboczi, E. J., Oo, N. Y., Spatari, S., Hsuan, Y. G., ... & Farnam, Y. (2020). Potential Use of Lightweight Aggregate (LWA) Produced from Bottom Coal Ash for Internal Curing of Concrete Systems. Cement and Concrete Composites, 105, 103428.

Botahala, L., Manimoy, H., Lema, Y. E. T., Klaping, E. D., & Tang, M. (2021). Study Of Chemical Concentration Of Main Ingredients For Making Portland Composite Cement. Widya Teknik, 20(1), 28-32.

Bustillo Revuelta, M., & Bustillo Revuelta, M. (2021). Aggregates. Construction Materials: Geology, Production and Applications, 17-53.

Gardete, D., Picado-Santos, L., Capitão, S., & Luzia, R. (2022). Asphalt Mix Design: Discussion on the Bulk-Specific Gravity Procedure Influence on The Results Obtained from Empirical, Volumetric, and Performance-Based Methods. Construction and Building Materials, 342, 127870.

Heldita, D. (2021). Study of The Effect of The Use of Additional Additives Damdex and Bestmittel on The Compressive Strength of Concrete f'c 20 MPa. Journal of Green Science and Technology, 5(2).

Kapeluszna, E., Szudek, W., Wolka, P., & Zieliński, A. (2021). Implementation of Alternative Mineral Additives in Low-Emission Sustainable Cement Composites. Materials, 14(21), 6423.

Kaplan, G., Gulcan, A., Cagdas, B., & Bayraktar, O. Y. (2021). The Impact of Recycled Coarse Aggregates Obtained from Waste Concretes on Lightweight Pervious Concrete Properties. Environmental Science and Pollution Research, 28, 17369-17394.

Khan, S. U., Nuruddin, M. F., Ayub, T., & Shafiq, N. (2014). Effects of Different Mineral Admixtures on The Properties of Fresh Concrete. The Scientific World Journal, 2014.

Kim, Y. H., Park, C. B., Choi, B. I., Shin, T. Y., Jun, Y., & Kim, J. H. (2020). Quantitative Measurement of Water Absorption of Coarse Lightweight Aggregates in Freshly-Mixed Concrete. International Journal of Concrete Structures and Materials, 14, 1–9.

Pacheco, J., & de Brito, J. (2021). Recycled Aggregates Produced from Construction and Demolition Waste for Structural Concrete: Constituents, Properties and Production. Materials, 14(19), 5748.

Patah, D., Hamada, H., & Dasar, A. (2020, June). Effects of Mineral Admixtures on Pore Structure and Compressive Strength of Mortar Contaminated Chloride. In IOP Conference Series: Materials Science and Engineering (Vol. 875, No. 1, p. 012091). IOP Publishing.

Song, Y., Ma, S., Liu, J., & Yue, Z. Q. (2023). Laboratory Investigation of CDG Soil as Source of Fine Aggregates for Portland Cement Concrete. Construction and Building Materials, p. 367, 130226.

Ulusoy, U. (2023). A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: from Macro to Nanoscale. Minerals, 13(1), 91.

Yeo, J. S., Koting, S., Onn, C. C., & Mo, K. H. (2021). An Overview on the Properties of Eco-Friendly Concrete Paving Blocks Incorporating Selected Waste Materials as Aggregate. Environmental Science and Pollution Research, 28, 29009-29036.



  • There are currently no refbacks.

Copyright (c) 2024 Jurnal Teknik Sipil


Jurnal Teknik Sipil Universitas Tanjungpura Indexed by :     

ISSN 1412-3576 (print), 2621-8429 (online)

Published by :

Department of Civil Engineering, Faculty of Engineering, Tanjungpura University

Jl. Profesor Doktor H. Hadari Nawawi, Bansir Laut, Pontianak Tenggara, Kota Pontianak Kalimantan Barat Indonesia 78124
Telp./Fax: +0561-740186
Email: [email protected]

CP: 081256123030-085245045025

Visitor CounterJurnal Teknik Sipil

In its management and publication, this Civil Engineering Journal collaborates with:

1. Masyarakat Hidrologi Indonesia

2. Forum Studi Transportasi Antar Perguruan Tinggi (FSTPT)