DETERMINATION OF REPRESENTATIVE MOCK MODEL PARAMETERS FOR MONTHLY DISCHARGE CURVE DEVELOPMENT IN THE UPPER KAPUAS RIVER BASIN
Abstract
Representative Mock Model Parameters for Generating Monthly Discharge Curves in the Upper Kapuas River Basin provide valuable insights into hydrological processes influenced by climatic factors. Potential evapotranspiration peaks in August due to elevated temperatures and intensified sunshine during the 2005 dry season, leading to increased water demand from soil and vegetation. This results in heightened water loss to the atmosphere, reducing available water for river flow and decreasing monthly discharge, which is crucial during dry periods. Effective water resource management strategies are essential to mitigate potential water scarcity. High rainfall in the upstream Kapuas watershed significantly impacts monthly discharge, with increased surface flow directly boosting river discharge. The monthly discharge varies widely between rainy and dry seasons, notably rising during heavy rainfall, potentially causing flooding. Effective watershed management, including runoff management, reforestation, and infrastructure development, is critical to mitigate these impacts and optimize water resources for irrigation and supply, ensuring efficient utilization of increased rainfall. Correlation and RSR test results underscore the model's ability to capture variable relationships and predict outcomes accurately. Strong correlations between 0.8 to 1 and RSR values ranging from 0.5 to 0.7 demonstrate the model's reliability in various scenarios. Models with lower RSR values below 0.5 exhibit exceptional prediction accuracy, emphasizing their utility in diverse applications. These findings highlight the importance of refining models to enhance accuracy and reliability in predictive hydrological applications within the Upper Kapuas River Basin, ensuring adequate water resource management and flood risk mitigation.
Keywords
Full Text:
PDFReferences
Al-Timimi, Y. K., Al-Lami, A. M., & Al-Shamarti, H. K. (2020). Calculation of The Mean Annual Rainfall in Iraq Using Several Methods in GIS. Plant Archives, 20(2), 1156-1160.
Alves, E. D. S., Rodrigues, L. N., Cunha, F. F., & Farias, D. B. (2021). Evaluation of Models to Estimate The Actual Evapotranspiration of Soybean Crop Subjected to Different Water Deficit Conditions. Anais da Academia Brasileira de Ciências, 93(4), e20201801.
Djaman, K., Irmak, S., Kabenge, I., & Futakuchi, K. (2016). Evaluation of FAO-56 Penman-Monteith Model with Limited Data and The Valiantzas Models for Estimating Grass-Reference Evapotranspiration in Sahelian Conditions. Journal of Irrigation and Drainage Engineering, 142(11), 04016044.
Gampo, E., Soeryamassoeka, S. B., & Kartini, K. (2023). The Use of Tropical Rainfall Measuring Mission Rainfall Data as Input Data for Water Availability Analysis with Rainfall-Runoff Models in the Melawi Sub-Basin. Jurnal Teknik Sipil, 23(1), 135-154.
Ginting, S. (2016). Rainfall-Runoff Model. Bandung: Balitbang Departemen PU.
Hwang, S. H., Kim, K. B., & Han, D. (2020). Comparison of Methods to Estimate Areal Means of Short Duration Rainfalls in Small Catchments, Using Rain Gauge And Radar Data. Journal of Hydrology, 588, 125084.
Jayanti, M., Sabar, A., Ariesyady, H. D., Marselina, M., & Qadafi, M. (2023). A Comparison of Three Water Discharge Forecasting Models for Monsoon Climate Region: A Case Study in Cimanuk-Jatigede Watershed Indonesia. Water Cycle, 4, 17-25.
Kirkham, M., B. (2014). Potential Evapotranspiration. in Principles of Soil and Plant Water Relations (Second Edition).
Krishna, P. R. (2019). Evapotranspiration and Agriculture-A Review. Agricultural Reviews, 40(1), 1–11.
Krisnayanti, D. S., Udiana, I. M., Chandra, C., & Welkis, D. F. B. Analisis Debit Tersedia pada DAS Temef dengan Menggunakan Metode NRECA, FJ Mock dan Tangki. Media Komunikasi Teknik Sipil, 27(2), 221-231.
Langat, P. K., Kumar, L., & Koech, R. (2019). Understanding Water and Land Use Within Tana and Athi River Basins in Kenya: Opportunities for Improvement. Sustainable Water Resources Management, 5, 977-987.
Lee, J., Kim, S., & Jun, H. (2018). A study of The Influence of The Spatial Distribution of Rain Gauge Networks on Areal Average Rainfall Calculation. Water, 10(11), 1635.
Lubis, R. I. S., Syahrul, S., & Devianti, D. (2022). Penggunaan Model Mock dalam Menghitung Ketersediaan Air di Daerah Aliran Sungai (DAS) Krueng Aceh. Jurnal Ilmiah Mahasiswa Pertanian, 7(3), 322-331.
Megantara, A. G., Wahyuni, S., & Limantara, L. M. (2022). Rationalization of Rainfall Station Density in The Jatiroto Sub-Watershed Using Ground and Satellite Rainfall Data. Civil and Environmental Science Journal, Vol. 05, No. 02, pp. 129-143, 2022.
Novák, V. (2021). Ecosystems and Global Changes. Acta Horticulturae et Regiotecturae, 24(s1), 70-79.
Osly, P. J., Dwiyandi, F., Ihsani, I., & Ririhena, R. E. (2019). Analisis Kebutuhan Dan Ketersediaan Air Kabupaten Manokwari dengan Model Mock. Jurnal Infrastruktur, 5(2), 59-67.
Samsuar, S., Faridah, S. N., Mubarak, H., & Lestari, N. (2023, May). Analysis of Potential Evapotranspiration Model Using Global Climate Data in Makassar City. In AIP Conference Proceedings (Vol. 2596, No. 1). AIP Publishing.
Shirmohammadi-Aliakbarkhani, Z., & Saberali, S. F. (2020). Evaluating of eight evapotranspiration estimation methods in arid regions of Iran. Agricultural Water Management, 239, 106243.
Soeryamassoeka, S.B. (2005). Laporan Akhir Penelitian Studi Identifikasi Sumber Air Baku di Kabupaten Kapuas Hulu.
Soeryamassoeka, S. B., Triweko, R. W., Yudianto, D., & Kartini. (2018). Challenges of Integrated Water Resources Management in Kapuas River Basin. 21st IAHR-APD Congress, 867–872.
Soeryamassoeka, S. B., Triweko, R. W., & Yudianto, D. (2020). Validation of Tropical Rainfall Measuring Mission (TRMM) Data in the Upper Kapuas River Basin. Journal of Civil Engineering, Science and Technology, 11(2), 125-131.
Soeryamassoeka, S.N. (2023). Bahan Ajar Hidrologi. Jurusan Teknik Sipil, Fakultas Teknik, Universitas Tanjungpura.
Suripin. (2004). Sistem Drainase Perkotaan yang Berkelanjutan.Yogyakarta: Andi.
Wiwoho, B. S., Astuti, I. S., Alfarizi, I. A. G., & Sucahyo, H. R. (2021). Validation of Three Daily Satellite Rainfall Products in A Humid Tropic Watershed, Brantas, Indonesia: Implications to Land Characteristics and Hydrological Modelling. Hydrology, 8(4), 154.
Wuysang, J.E., Soeryamassoeka, S.B. (2021). A Study on Developing Theoretical Framework, Dimensions, and Indicators of Urban Water Security in Indonesia. In: Babel, M., Haarstrick, A., Ribbe, L., Shinde, V.R., Dichtl, N. (eds) Water Security in Asia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-54612-4_10
Yuanita, E., Kartini, K., & Soeryamassoeka, S. B. (2023). Analysis Water Availability and Water Balance in Irrigation Areas Rintau, District Sekayam. Jurnal Teknik Sipil, 23(1), 54-61.
DOI: https://doi.org/10.26418/jts.v24i2.69008
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Teknik Sipil
Jurnal Teknik Sipil Universitas Tanjungpura Indexed by :
ISSN 1412-3576 (print), 2621-8429 (online)
Published by :
Department of Civil Engineering, Faculty of Engineering, Tanjungpura University
Jl. Profesor Doktor H. Hadari Nawawi, Bansir Laut, Pontianak Tenggara, Kota Pontianak Kalimantan Barat Indonesia 78124
Telp./Fax: +0561-740186
Email: jts@untan.ac.id
CP: 081256123030-085245045025
Visitor Counter: Jurnal Teknik Sipil
In its management and publication, this Civil Engineering Journal collaborates with:
1. Masyarakat Hidrologi Indonesia
2. Forum Studi Transportasi Antar Perguruan Tinggi (FSTPT)
MAPS: