Jurnal Teknik Sipil: Vol 23, No. 1, February 2023, 135-145 Department of Civil Engineering, University of Tanjungpura. ISSN: 1412-1576 (Print), 2621-8428 (Online), Indonesia

Constructions of UNTAN

Jurnal Teknik Sipil

Journal homepage: https://jurnal.untan.ac.id/index.php/jtsuntan

ANNUAL ENERGY BASED ON TIME SIMULATION OF MICROHYDRO POWER PLANT (PLTMH) JAMUS GIRIKERTO VILLAGE, SINE DISTRICT, NGAWI REGENCY.

*Muhammad Khoirur Rifqi¹, Faradlillah Saves^{1,} and Andi Patriadi¹

¹Faculty of Engineering, University of 17 Agustus 1945 Surabaya, Indonesia *rifqim.k885@gmail.com

Abstract Article history: PT. Candi Loka Jamus switched to using micro Submitted 31-12-2022 Revise on 27-01-2023 hydro power plants to meet its electrical energy Published on 28-02-2023 needs because of the high operational costs and environmental impact of fuel oil power plants. Keyword: However, during the dry season, the micro hydro Micro hydro power plant, Energy potential, Operational power plant is unable to produce enough energy time simulation, Season time simulation, Dependable to meet the needs, which could lead to damage discharge of its components and decreased performance. To address this issue, the energy potential of the micro hydro power plant was calculated using operational time simulation and season time DOI: http://dx.doi.org/10.26418/jtsft simulation. The rain data was analysed using the double mass curve analysis method and arithmetic mean method to calculate the discharge throughout the year. The dependable discharge was calculated using the F.J. Mock method and the basic year method, and the physical potential formula was used to calculate the energy potential. Based on the calculations, the dependable discharge energy potentials of $Q_{80},\ Q_{70},\ Q_{50},\ and\ Q_{30}$ were found to be 569,173.91 KWh, 614,737.01 KWh, 589,640.81 KWh, and 619,855.44 KWh, respectively. The efficient operating time of the micro hydro power plant was determined based on the Q₈₀ dependable discharge energy potential with a simulation of operational time. The plant should be active from January 1 to August 15, deactivated for maintenance purposes from August 16 to October 31, and reactivated from November 1 to December 31. With an active period of 287 days, the Jamus micro hydro power plant has an energy potential of 488,732.17 KWh in one year.

1. Introduction

In the industrial field, the use of fuel oil (fossil) as a source of electrical energy is still widely used. Currently, the provision of fossil fuel oil for industrial fields on a large scale is relatively difficult and expensive, which has a direct impact on the increasing operational costs of production. Air pollution caused by the use of fossil fuel oil also has a negative impact on the environment. Therefore, to meet the electrical energy needs in the industrial field, it is necessary to create cheap and environmentally friendly tools, one of which is the Micro Hydro Power Plant.

The Micro Hydro Power Plant, often abbreviated as PLTMH, is a small-scale power plant with a power of less than 100 kW that utilizes hydropower as an energy producing source (Patty, 1995). PLTMH is a new renewable energy source and deserves to be called energy because clean it is friendly. environmentally In terms of technology, PLTMH was chosen because of its simple construction, easy operation, and maintenance, as well as ease of supply of spare parts. Economically, its operating and maintenance costs are relatively low, while the investment costs are quite competitive with other power plants.

The Jamus tea plantations and factories are located on the slopes of northern Mount Lawu, precisely in Girikerto Village, Sine District, Ngawi Regency. To meet the electrical energy needs of Jamus tea plantations and factories, which are currently managed by PT. Candi Loka, the company switched to using PLTMH from the previously used fossil fuel oil sources due to the high operational costs and environmental impacts. The selection of PLTMH as a source of electrical energy is supported by the existence of the Sawahan Source spring water channel located in a tea plantation area of 478.20 ha. Besides, the Jamus tea plantation and factory have a significant height difference that allows the construction of PLTMH (located at an altitude of 800 MDPL to 1200 MDPL). (Bambang Sutriyono, 2021).

Currently, the PLTMH has been operating, but during the dry season, the energy produced is not sufficient to meet the needs. If the micro hydro power plant continues to operate, its components will be damaged, and the performance of the power plant may decrease.

2. Materials and Methods

2.1 Theoretical Frame Work

This study analyses the energy potential of micro hydro power plants based on operational time simulations and seasonal time simulations.

The purpose of this study is to determine the magnitude of the annual energy potential of micro hydro power plants based on the dependable discharge of Q_{80} , Q_{70} , Q_{50} , and Q_{30} , the study also aims to determine the difference in energy potential generated before and after operational time and seasonal time simulations, and to identify the optimal operating time for the Jamus micro hydro power plant.

2.2 Research Location

The location of this study is at PLTMH Jamus which is located in the Jamus Tea Plantation area, Girikerto Village, Sine District, Ngawi Regency, with location coordinates namely S 07° 33' 37.08" and E 111° 10' 37.2" can be shown in figure 1.

Figure 1. Research Location

2.3 Data

This study uses two types of data, namely primary and secondary data. Primary data is the data obtained directly from the field, including micro hydro power plant survey data, contour maps, and field documentation. Meanwhile, secondary data is the data obtained from other parties, including watershed maps, 10-year rain data (2012-2021), and climatological data.

2.4 Analysis Method

2.4.1 Instantaneous Discharge

An instantaneous discharge that can be calculated is a discharge that passes through a weir. The discharge through the weir can be calculated by the following equation:

$$Q = \frac{2}{2}Cd \times B\sqrt{2g(Yo - P)^3}$$

Q is discharge (m³/s), B is width of weir (m), C_d is discharge coefficient (0,9). (Y₀ – P) is the vertical distance between the water level from the weir and the lighthouse.

2.4.2 Calculation of Height Difference

Head height or height difference is calculated by using the Tacheometric Method with theodolite tools for surveying. The calculations are performed using equations: $S = D \times \cos m$

 $= (BA - BB) \times 100 \times \cos^2 m$

$$\Delta H = \frac{1}{(BA - BB)} \times 100 \sin 2 m + i - BT$$

Figure 2. Tacheometric Method

S is horizontal distance, ΔH is height difference, i is height of tool, BA is upper thread readings, BB is lower thread readings, BT is middle thread readings, m is oblique angle, z is zenith angle (90° - m), and D is oblique distance.

2.4.3 Evapotranspiration

Evapotranspiration is the total amount of water that is returned to the atmosphere from the ground surface, water bodies, and vegetation due to the influence of climatic factors and vegetation physiology (Chay Asdak, 1995). In other words. the magnitude of evapotranspiration is the sum of evaporation (water evaporation from the soil surface), interception (re-evaporation of rainwater from the surface of vegetation leaves), and transpiration (evaporation of groundwater into the atmosphere through vegetation).

2.4.4 Missing Rain Data Filling

Since this study will calculate the discharge during both flooded and dry periods, it is necessary to fill in the missing rain data because complete data is required for the next rain-discharge transformation calculation using the F.J Mock method. The missing rain data will be filled in using the Reciprocal method, which is considered better than the Normal Ratio method (Bambang Triatmodjo, 2009) for calculating lost rain data because it takes into account the distance between stations (Li). This is done using the formula shown in the equation:

$$\mathsf{P}_{\mathsf{x}} = \frac{\sum_{i=1}^{n} \frac{P_{i}}{L_{i}^{2}}}{\sum_{i=1}^{n} \frac{1}{L_{i}^{2}}}$$

 P_x is missing rain data at station X, P_i is rain data at surrounding stations in the same period (mm), L_i is the distance between station X and the surrounding stations (km), and n is the number of rain stations in the vicinity.

2.4.5 Consistency Test of Rain Data

This study employed the double mass curve method to assess the consistency of rainfall

data. Consistency can be deemed to be present if $R^2 \sim 1$. The equations used in our analysis were as follows:

$$\mathsf{R}^{2} = \frac{\sum \operatorname{xiyi} - \sum \operatorname{xi} \sum \frac{yi}{n^{2}}}{\sum \operatorname{xi}^{2} - \frac{(\sum \operatorname{xi})^{2}}{n} - \frac{(\sum \operatorname{yi})^{2}}{n}}$$

 R^2 is coefficient of determination, n is the amount of data, x_i is the rain data, y_i is the average of the rain data.

2.4.6 Regional Rainfall

The rainfall of the region is calculated using the arithmetic mean method. This method involves measuring all precipitation at the specified station, summing it, and then dividing the result by the number of observation rain stations. The average rainfall in the Jamus PLTMH area is thus obtained.

$$CH_{average} = \frac{\sum Ri}{n}$$

 $CH_{average}$ is average of rain data, R_i is magnitude of CH at station I, and n is number of rain stations.

2.4.7 F.J. Mock Method

The Mock method is a water balance model that enables the calculation of monthly discharge from rainfall data, evapotranspiration, soil moisture, and groundwater reservoirs. Developed based on watershed research conducted throughout Indonesia, the Mock water balance model provides a relatively straightforward calculation method for various components (KP-01, 2010).

2.4.8 Dependable Discharge

The dependable discharge of a river is defined as the minimum discharge level that can be met with a certain percentage of probability, such as 90%, 80%, or other values, and can be utilized for specific purposes. The degree of reliability of such discharges can be determined based on the probability of their occurrence, calculated using the Weibull formula. The formula is as follow as:

$$\mathsf{P} = \frac{\mathsf{i}}{(\mathsf{n}+1)} \times 100\%$$

i is the number of discharge sequence, n is the amount of data, and P is the probability of observing the expected set of values during the observation period.

2.4.9 Basic Year Method

Basic Year analysis is a method used for calculating rain discharge based on annual average data. The Basic Year method is often used to calculate the dependable discharge, which is the minimum discharge level that can be relied upon to meet certain needs, such as for irrigation or hydropower generation. The steps for calculating the dependable discharge using the Basic Year method are as follows:

- 1. Calculate the dependable discharge data using the Basic Year method formula.
- 2. Sort the discharge data from smallest to largest.
- 3. Determine the reference data for calculations using the Basic Year method formula."

$$\mathsf{R}_{\mathsf{i}} = \frac{\frac{n}{100\%}}{\frac{100\%}{100\% - i}} + 1$$

 $R_{i}\xspace$ is the dependable discharge used, and n is the amount of data.

2.4.10 Micro Hydro Power Plants

PLTMH is defined as a power plant that uses hydropower as the main medium for driving turbines and generators. The power scale of micro hydro is generated from 5 kW to 50 kW. The process of changing kinetic energy in PLTMH is used to drive water turbines and electric generators to produce electrical energy (Notosudjono, D., 2002).

2.4.11 Building Components of Micro Hydro Power Plants

• Weir

A weir is a water structure that serves to raise the height of the water level, allowing some of the water to flow over it.

- Forebay The function of forebay is to control difference in discharge in the pipe (penstock).
- Rapid Pipe (Penstock)

A pipe or penstock is a tube that functions to carry water from the reservoir down to the turbine. When planning the installation of a penstock, factors to consider include its diameter, thickness, and material selection.

• Pipe Hydrolysis

High-pressure losses consist of major and minor losses. Major losses are caused by friction in the pipes, while minor losses are caused by factors such as turns, reducers, valves, and other components (Sularso, 2006).

Major Head Losses

Major head losses is the pressure drop that occurs in a fluid flow system due to frictional losses in the piping system. The Darcy equation can be used to calculate friction loss between the pipe wall and fluid flow, assuming no change in cross-sectional area.

 $h_f = f \times L \times v^2 \times D^2 \times g$

 h_f is major head losses, D is diameter of the pipe (m), L is length of the pipe (m), v is velocity of the fluid, f is friction factor, and g is acceleration due to gravity (9,81 m/s²).

 Minor Head Losses
 Minor head losses refer to the pressure drop that occurs in a fluid flow system due to obstructions such as valves, fittings, bends, and changes in pipe diameter. Minor head losses are generally expressed by the equation:

 $h = \frac{K \cdot v^2}{2g}$

h is minor head losses, K is minor losses coefficient which is specific to the type of obstruction in the pipe based on Table 1, v is the average velocity of the fluid in the pipe and g is acceleration due to gravity (9,81 m/s^2).

Table 1.	The Value of Minor losses Coefficient
No	K value

INO.	r value	
1	Pipeline inlet	0,5
2	Sharp bend joints	0,9
3	The bend connection is not sharp	0,75
4	One-way valve	2,5
5	Accessories	1,8

• Net Head of The Turbine

The net head of the turbine refers to the difference in elevation between the water level in the reservoir or source and the water level at the turbine intake, taking into account any losses due to friction, bends, and other obstructions in the water flow. Effective height of turbine is calculated by this following formula:

Hnetto = Hstatic - Hftotal

H_{netto} is effective height of turbine, H_{static} is height of static head which is the difference in elevation between the water level in the reservoir and the turbine inlet, Hf is the head loss due to friction in the penstock or pipeline carrying the water to the turbine.

Rapid Pipe Diameter

Rapid pipe diameter is defined as the internal diameter of the pipe, which is typically measured in millimeters or inches. According to the micro design standard hydro penstock diameter is calculated by this following equation:

D =
$$0.72 \times (Q_{dependable}) \times 0.5$$

d = 2,69 ×
$$\left(\frac{n^2 \times Q^2 \times L}{H}\right)$$

D is penstock diameter (m) and Q is dependable diameter (m³/s). d is penstock diameter, n is manning coefficient, Q is maximum discharge passes through penstock (m³/s), L is length of penstock, and H is falling height (m).

Power House

The power house is a building or facility where the generators are located, which convert the mechanical energy produced by the turbine into electrical energy. In a hydropower system, water flows through the penstock and drives the turbine, which in turn drives the generator.

2.4.12 Hydropower Capability Design

• Falling Height (Head)

Falling height is used to determine the potential energy available in the water to generate electricity which is the vertical distance between the water level at the intake and the turbine measure in meters. The falling height is difference between the gross falling height and the falling height of the water losses pressure.

```
Heff = Hgross - Hlosses
```

 H_{eff} is the effective falling height, H_{gross} is gross falling height, and falling height of the lost water pressure.

Usable Power

The power generated can be estimated preliminarily by calculating the effective fall height, discharge, water density, and turbine efficiency. The efficiency of the turbine depends on the type of turbine used, therefore, different types of turbines will result in different power outputs. (Dietzel Fritz, 1990). The usable power can be calculated with this equation:

 $\mathsf{P} = \eta_t \times g \times Q_{dependable} \times H_{eff}$

P is usable power, η_t is turbine efficiency, g is acceleration due to gravity (9,81 m/s²), Q is dependable discharge, and H_{eff} is the effective falling height.

2.4.13 Time Simulation

The time simulation used as the basis for calculations here involves two types:

- Time simulation based on the operational time of PLTMH, where it is determined whether or not PLTMH can meet the power needs of plantation operations and Jamus Tea Factory. When PLTMH is unable to meet power needs, it will be deactivated for maintenance purposes. After that, the difference in annual energy potential will be calculated if the PLTMH is activated at any time, compared to the current deactivated PLTMH as mentioned above.
- Time simulation based on the time of the season. The basis for determining the season here is based on rainfall at an interval of 3 months. The highest rainfall during the 3-month period will be determined as the rainy season, followed by the interval of the next season. Then, the energy potential will be calculated for each time interval of the season.

3. Result and Discussion

3.1 Rain Data Consistency Test

After filling in the missing rainfall data, a rainfall consistency test is then carried out to determine whether the rainfall data used for calculations is reliable or not. The consistency of the annual rainfall data is tested using the Double Mass Curve Analysis method, where the station's rainfall data is considered consistent when R2~1. If it does not meet this requirement, the rainfall data is considered inconsistent, and it is necessary to analyze the calculations with correction factors.

Table 2. Recapitulation of Average Rain Data
--

Voor			Rain Station	Average	Cummulative	
	Teal	Ngelak	Waduk Gebyar	Dawung	Average	Average
	2012	1631	1753	1403	1596	1596
	2013	2854	2767	2011	2544	4140
	2014	3136	1776	1035	1982	6122
	2015	1910	1240	1265	1472	7594
	2016	2490	2077	2184	2250	9844
	2017	1851	1618	1648	1706	11550
	2018	777	1560	1542	1293	12843
	2019	1877	1678	951	1502	14345
	2020	2358	1191	1192	1580	15925
	2021	1647	1150	1417	1405	17329

3.2 Regional Rainfall Analysis

The calculation of the regional rainfall of the three stations is calculated using the arithmetic average method. The region's rain data is calculated in the 15-day period. The calculation steps are as follows:

- Used example is rain data in January first 15 days in 2012 which is :
 - Ngelak = 203 mm Waduk Gebyar = 254 mm
 - Dawung = 108 mm
- Regional rainfall is calculated with this formula:

 $P = \frac{203+254+108}{2} = 188,33 \text{ mm}$

The calculations is continued until 2021. The results of calculations are presented on this table below.

 Table 3. Rain Data of 15 Days Period

Veer	1E Dailu	WOITEN											
Teal	15 Dally	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Okt	Nov	Des
2012	1	188	157	92	121	46	100	0	0	0	3	18	138
2012	П	143	95	50	38	4	13	0	0	0	37	191	161
2012	1	277	179	161	250	0	92	8	0	0	0	84	241
2015	П	198	109	175	148	159	83	0	0	0	95	73	214
2014	1	205	124	107	111	52	13	46	0	0	0	47	111
2014	П	279	46	209	138	48	100	16	3	10	0	143	172
2015	1	81	165	143	122	0	0	0	20	0	0	45	82
2015	П	159	147	253	62	7	0	0	0	0	0	65	120
2016	1	36	210	66	51	20	62	24	44	33	110	179	86
2010	П	71	205	75	52	55	80	56	30	105	127	426	49
2017	1	50	183	139	136	34	2	0	0	0	86	93	78
2017	11	217	84	83	111	48	4	0	0	40	57	161	101
2018	1	147	119	159	48	4	0	5	0	0	5	55	56
2010	11	153	163	113	107	2	19	0	0	0	11	71	54
2019	1	114	162	159	71	49	0	1	0	0	0	16	121
2015	11	132	186	117	62	8	3	0	0	0	4	27	270
2020	1	143	167	104	100	50	25	12	36	10	39	41	145
2020	П	65	106	108	37	60	3	10	28	11	114	79	88
2021	1	49	138	78	62	40	48	17	4	8	12	99	78
2021	11	129	88	159	28	34	65	0	0	18	28	121	102

3.3 Rain and Discharge Transformation with Mock Method

Calculating the rain-discharge transformation with the mock method is based on the data from the calculation of 15 daily or monthly rainfall of the region, data from the evapotranspiration calculation, and regional parameter data. The calculation results is presented by this table below.

 Table 4. The Results of Dependable Discharge in 2012

Month	45 Deily	Dependable
wonth	15 Daily	Discharge
lon	I	11,7070
Jan		7,6799
Ech	<u> </u>	9,7033
Feb		5,6672
Mor	<u> </u>	4,9370
Ividi	II	1,4432
Apr	1	5,7821
Арі	II	1,1665
Moi	I	1,0059
IVIEI	II	0,6493
lup	I	3,3566
Jun		0,5882
1.1	I	0,4216
Jui	II	0,3372
Aug	I	0,2698
Aug	II	0,2158
Son		0,1727
Sep	II	0,1381
Okt	I	0,1238
OK		0,2695
Nov	<u> </u>	0,1557
INUV		8,3495
Dec	<u> </u>	5,8459
Des	II	9,2282

 Table 5. Recapitulation of Every Year

 Discharge with Mock Method

	-	Year									
Month	15 Daily	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
lan		11,707	17,58	11,239	2,949	0,478	1,568	7,413	4,561	5,746	0,586
Jan		7,68	11,51	15,962	9,395	0,588	9,946	7,69	6,182	0,9	5,049
Eab		9,703	10,81	4,86	9,466	8,9	9,323	2,943	8,839	7,931	5,871
FeD		5,667	6,089	1,444	9,471	9,06	1,737	10,002	10,07	4,305	3,118
Mor		4,938	10,041	4,545	7,914	1,122	8,611	9,136	7,65	4,1	2,055
IVICII		1,443	9,028	11,548	14,576	1,005	2,442	3,367	5,274	4,795	6,38
Apr		5,782	16,881	4,898	4,959	0,76	6,689	1,267	1,416	3,44	1,18
Λpi		1,166	8,55	7,656	2,437	0,663	5,02	4,257	2,08	0,961	0,716
Moi		1,006	1.850	1,447	1,204	0,424	1,182	0,834	1,435	0,865	0,658
NICI		0,649	9,852	1,189	0,997	0,531	1,045	0,661	0,658	0,79	0,535
lun		3,357	5,172	0,829	0,771	0,511	0,659	0,52	0,495	0,521	1,063
Juli		0,588	4,175	4,811	0,617	1,809	0,538	0,508	0,412	0,336	1,986
Int		0,422	1,28	0,738	0,493	0,335	0,416	0,357	0,322	0,316	0,373
501		0,337	0,994	0,619	0,448	0,566	0,333	0,266	0,254	0,251	0,234
Aura		0,27	0,795	0,433	0,414	0,369	0,266	0,213	0,203	0,336	0,209
Aug		0,216	0,636	0,361	0,253	0,268	0,213	0,17	0,162	0,265	1,15
Son		0,173	0,509	0,277	0,202	0,258	0,17	0,136	0,13	0,153	0,156
Seb		0,138	0,407	0,27	0,162	4,268	0,328	0,109	0,104	0,135	0,184
OH		0,124	0,326	0,177	0,129	3,935	2,755	0,111	0,083	0,257	0,133
OKI		0,269	1,487	0,142	0,103	4,814	0,478	0,124	0,084	4,005	0,195
New		0,156	1,365	0,343	0,301	10,349	3,295	0,324	0,132	0,413	2,916
		8,35	2,555	5,884	0,293	27,697	8,505	0,315	0,043	1,318	6,144
Dee		5,846	12,724	4,619	1,441	4,79	1,836	0,319	2,436	5,76	2,641
Des		9 228	12 008	9 887	5 014	1 837	1 576	0.301	16.311	3 081	3 401

Table 6.	The Result	of Mock	Method	Control

2012 0,9860 OK 2013 0,9887 OK 2014 0,9906 OK 2015 0,9888 OK 2016 0,9938 OK 2017 0,9814 OK 2018 0,9932 OK 2020 0,9834 OK 2020 0,9834 OK	Year	WS-RO Corelation	Note	
2013 0,9887 OK 2014 0,9906 OK 2015 0,9888 OK 2016 0,9938 OK 2017 0,9814 OK 2018 0,9932 OK 2019 0,9934 OK 2020 0,9834 OK	2012	0,9860	OK	-
20140,9906OK20150,9888OK20160,9938OK20170,9814OK20180,9897OK20190,9932OK20200,9834OK20210,9907OK	2013	0,9887	OK	
20150,9888OK20160,9938OK20170,9814OK20180,9897OK20190,9932OK20200,9834OK20210,9907OK	2014	0,9906	OK	
20160,9938OK20170,9814OK20180,9897OK20190,9932OK20200,9834OK20210,9907OK	2015	0,9888	OK	
20170,9814OK20180,9897OK20190,9932OK20200,9834OK20210,9907OK	2016	0,9938	OK	
2018 0,9897 OK 2019 0,9932 OK 2020 0,9834 OK 2021 0,9907 OK	2017	0,9814	OK	
20190,9932OK20200,9834OK20210,9907OK	2018	0,9897	OK	
20200,9834OK20210,9907OK	2019	0,9932	OK	
2021 0,9907 OK	2020	0,9834	OK	
	2021	0,9907	OK	_

3.4 Dependable Discharge Analysis with The Basic Year Method

Dependable discharge refers to the amount of water available to meet needs while taking into account the risk of failure. It is calculated to ensure that the amount of water is likely to be available throughout the year, even during the dry and rainy seasons. The most commonly used measures of dependable discharge are Q_{80} , Q_{70} , Q_{50} , and Q_{30} , which correspond to the probability of discharge being available at 80%, 70%, 50%, and 30%, respectively.

To determine the dependable discharge, an analysis is conducted based on flow discharge data from 2012 to 2021. The main method used for calculating dependable discharge is the basic year planning method (Basic Year). The following steps and examples illustrate how to use this method:

- Calculate the annual average discharge using the flow discharge data obtained from the Mock Method calculation. Recapitulate the results in the following table:
- Table7.AnnualDependableDischargeRecapitulation with Mock Method(m³/s)

· · ·	
Year	Dependable Discharge
2012	3,301
2013	5,076
2014	3,924
2015	3,084
2016	3,555
2017	2,872
2018	2,139
2019	2,886
2020	2,124
2021	1,914

 Sort annual dependable discharge from small to large. The result is presented in Table 8.

Table 8. S	Sorted Annual	Dependable	Discharge
------------	---------------	------------	-----------

Year	Dependable Discharge
2021	1,914
2020	2,124
2018	2,139
2017	2,872
2019	2,886
2015	3,084
2012	3,301
2016	3,555
2014	3,924
2013	5,076

3. Determine the year of dependable discharge to use as the basis for design, using the probability formula from Weibull.

Dependable Discharge
For
$$Q_{80} = \frac{10}{\frac{100\%}{(100\% - 80\%)}} + 1$$

= 3 (2018)

The year 2018 is selected as Q_{80} with average dependable discharge of 2,139 $\mbox{m}^3\mbox{/s}.$

1

Q80

• Dependable Discharge Q₇₀

For
$$Q_{70} = \frac{10}{\frac{100\%}{(100\% - 70\%)}} +$$

= 4 (2017)

The year 2017 is selected as Q_{70} with average dependable discharge of 2,872 $m^{3}\!/s.$

Dependable Discharge Q₅₀

For
$$Q_{50} = \frac{10}{\frac{100\%}{(100\%-50\%)}} + 1$$

= 6 (2015)

The year 2015 is selected as Q_{50} with average dependable discharge of 3,084 m³/s.

• Dependable Discharge Q₃₀

For
$$Q_{30} = \frac{10}{\frac{100\%}{(100\% - 30\%)}} + 1$$

= 8 (2016)

The year 2016 is selected as Q_{30} with average dependable discharge of 3,555 m³/s.

4. Furthermore, a calculation of the power and energy potential of PLTMH Jamus will be carried out by using the probability discharge data from each year. 5. The dependable discharge is presented in the graph which is showed in these following figures below.

Figure 4. Dependable Discharge (Q80) - 2018

Figure 5. Dependable Discharge (Q70) - 2017

3.5 Potential Energy

1. Power Calculation

The resulting electrical power can be calculated, with values ranging from 0.8 to 0.95. Since the existing turbine is old and has been used, its efficiency value is determined to be 0.8. An example of calculating electrical power using the

maximum discharge through a pipe is shown below:

- Ρ $= \eta_t \times g \times Q_{andalan} \times H_{eff}$ $= 0.8 \times 9.81 \times 0.179 \times 50.45$ = 70.954 kW
- **Electrical Potential Energy** 2. Electrical energy is obtained by calculating the electrical power generated during the operating time of the PLTMH in a 15-day period. As an example, the calculation uses a 15-day (360-hour) operating duration, as shown below: Е

$$= P \times T$$

$$= 70,95415 \times 360$$

- = 25543,49 kWh
- 3. **Electrical Energy Load**

The electrical energy load is calculated by adding up the electrical power load of production activities and employee housing in the PT Candi Loka Jamus Tea Factory area, which amounts to 67,7 kW. This value is then multiplied by the operational time of the PLTMH. Е

$$= P \times T$$

 $= 67,7 \times 360$

= 24372 kWh

The result of all calculations is presented in Table 9 and Figure 8.

Table 9. Recapitulation of Potential Energy and **Energy Load**

Month	15 Daily	Potential Energy (kWh)	Energy Load (kWh)
Jan		25543,490	24372,000
		27246,390	25996,800
F . I.	I	25543,490	24372,000
гер		20434,790	19497,600
Mor		25543,490	24372,000
IVIAI		27246,390	25996,800
Apr		25543,490	24372,000
Дμ		25543,490	24372,000
Mov		25543,490	24372,000
iviay		27246,390	25996,800
lun	I	25543,490	24372,000
Jun		25543,490	24372,000
l. I		25543,490	24372,000
Jui		27246,390	25996,800
Aug		25543,490	24372,000
		21798,210	25996,800
Sep		16348,660	24372,000
		13078,930	24372,000
Okt	<u> </u>	13332,170	24372,000
		15883,770	25996,800
Nov		25543,490	24372,000
		25543,490	24372,000
Dec	<u> </u>	25543,490	24372,000
Des	II	27246,390	25996,800

Time Simulation 3.6

The time simulation used as the basis for calculations here is of two types:

1. Time simulation based on the operational time of the Micro Hydro Power Plant, which is determined by whether or not the plant can meet the power needs of production activities and employee housing at PT Candi Loka Jamus. When the plant is unable to meet power needs, it will be deactivated for maintenance purposes. Afterwards, the difference in annual energy potential will be calculated if the plant is activated at any time, under the aforementioned conditions.

Table 10. Recapitulation of Potential Energy with Operational Time Simulation

		Potential	Energy	
Month	15 Daily	Energy	Load	
	-	(kWh)	(kWh)	
Jan		25543,490	24372,000	
		27246,390	25996,800	
Tab		25543,490	24372,000	
reb		20434,790	19497,600	
Mor		25543,490	24372,000	
IVIAI		27246,390	25996,800	
Apr		25543,490	24372,000	
Арі		25543,490	24372,000	
Mov		25543,490	24372,000	
ividy		27246,390	25996,800	
lun	I	25543,490	24372,000	
Jun		25543,490	24372,000	
lul.		25543,490	24372,000	
Jui		27246,390	25996,800	
Aug		25543,490	24372,000	
		0	25996,800	
Sep		0	24372,000	
		0	24372,000	
Okt	<u> </u>	0	24372,000	
OKI		0	25996,800	
Nov	<u> </u>	25543,490	24372,000	
INOV		25543,490	24372,000	
Dee		25543,490	24372,000	
Des	II	27246,390	25996,800	

- Figure 9. Q80 Potential Energy and Energy Requirement Graph with Operational Time Simulation
- Table 11. Comparison of Potential Energy
Before and After Operational Time
Simulation

Dependable Discharge	Before Simulation (kWh)	After Simulation (kWh)	Difference (kWh)
Q80	569173,910	488732,740	80441,170
Q70	614737,010	534311,950	80425,060
Q50	589641,810	541522,060	48119,750
Q30	619855,440	619855,440	-

2. Time simulation based on the season. The basis for determining the season is the rainfall at intervals of three months. The period with the highest rainfall will be determined as the rainy season, followed by the next season interval. Then, the energy potential will be calculated for each interval of the season. During the dry season, the Micro Hydro Power Plant will be decommissioned.

 Table 12. Recapitulation of Potential Energy with Seasonal Time Simulation

		Potential	Energy	
Month	15 Daily	Energy	Load	
		(kWh)	(kWh)	
lan	<u> </u>	25543,490	24372,000	
Jan		27246,390	25996,800	
Tab	<u> </u>	25543,490	24372,000	
i eb		20434,790	19497,600	
Mor	<u> </u>	25543,490	24372,000	
IVICI		27246,390	25996,800	
Apr	1	25543,490	24372,000	
дрі		25543,490	24372,000	
Mov	I	25543,490	24372,000	
iviay		27246,390	25996,800	
lun	I	25543,490	24372,000	
Jun		25543,490	24372,000	
Int	I	0	24372,000	
Jui		0	25996,800	
Aug	<u> </u>	0	24372,000	
		0	25996,800	
Sep	<u> </u>	0	24372,000	
		0	24372,000	
Okt	<u> </u>	13332,170	24372,000	
	II	15883,770	25996,800	
Nov	I	25543,490	24372,000	
NOV	II	25543,490	24372,000	
Dec		25543,490	24372,000	
Des		27246,390	25996,800	

- Figure 9. Q80 Potential Energy and Energy Requirement Graph with Seasonal Time Simulation
- Table 13.Comparison of Potential Energy
Before and After Seasonal Time
Simulation

Dependable Discharge	Before Simulation	After Simulation	Difference
	(KUTI)	400044 740	400550.470
Q80	569173,910	439614,740	129559,170
Q70	614737,010	463188,680	151548,330
Q50	589641,810	439135,660	150506,150
Q30	619855,440	463155,680	156699,760

3.7 Determination of Efficient PLTMH Operational Time

Based on a graph comparison of energy potential and needs, it can be concluded that the uptime of PLTMH based on operational time simulation (PLTMH is disabled when unable to meet electricity needs) is more efficient. Without sidelining maintenance time, the uptime of PLTMH based on the simulation of operational time is longer than the active time of PLTMH based on a simulation of season time (PLTMH is disabled throughout the dry season). This active time is directly proportional to the electrical energy produced. It is established that the operational time based on the calculation of the potential with the dependable discharge of the probability of 80% (Q80), namely:

- The first active period of PLTMH Jamus starts from January 1 (15th daily 1st) to August 15th (15th daily).
- PLTMH Jamus is deactivated from August 16 (15 to the 16th daily) to October 31 (15th daily 20th) because the river discharge was unable to produce enough energy to meet the electricity needs of production activities and houses of PT factory employees. Loka

Jamus Temple, so it will be deactivated for PLTMH maintenance needs.

- PLTMH is reactivated on November 1 (21st daily 15) to December 31 (24th daily 15), then continued into the following year.
- PLTMH has a total active period of 287 days with an energy potential of 488,732.17 kWh in one year.

4. Conclusion

Based on the results of the research that has been carried out, the following conclusions are obtained:

- 1. The amount of the river's flagship discharge based on the probability of dependable discharge is as follows:
 - Dependable discharge 80% probability (Q80) = 2.139 m3/dt
 - Dependable discharge 70% probability (Q70) = 2.872 m3/dt
 - Dependable discharge 50% probability (Q50) = 3.084 m3/dt
 - Dependable discharge 30% probability (Q30) = 3.555 m3/dt
- 2. The amount of energy potential that can be produced by PLTMH Jamus based on the dependable discharge probability is as follows:
 - Dependable discharge energy potential 80% probability (Q80) = 569,173.91 KWh
 - Dependable discharge energy potential 70% probability (Q70) = 614,737.01 KWh
 - Dependable discharge energy potential 50% probability (Q50) = 589,640.81 KWh
 - Dependable discharge energy potential 30% probability (Q30) = 619,855.44 KWh
- The amount of energy potential produced by PLTMH Jamus based on time simulation is as follows:
- Table 14.
 Comparison of Potential Energy Before and After Operational Time Simulation

Dependable Discharge	Before Simulation (kWh)	After Simulation (kWh)	Difference (kWh)
Q80	569173,910	488732,740	80441,170
Q70	614737,010	534311,950	80425,060
Q50	589641,810	541522,060	48119,750
Q30	619855,440	619855,440	-

5. Acknowledgement

First of all, I express my gratitude to my parents and brother for their unwavering support throughout this research. I also extend my sincere appreciation to Mrs. Faradlillah Saves, S.T., M.T., and Mr. Dr. Andi Patriadi, S.T., M.T., for their invaluable guidance and insights that led to the successful completion of this research. Lastly, I would like to thank all those who have contributed to this study in various ways, even though they cannot be mentioned individually.

6. Author's Note

Everything written in this article is original because it sums up my studies with Mrs. Faradlillah Saves, S.T., M.T, and Mr. Dr. Andi Patriadi, S.T., M.T. The content of this article have been reviewed in a thesis defense at the Civil Engineering Study Program Faculty of Engineering, University of 17 Agustus 1945 Surabayam, on 16 December 2022 by Mrs. Faradlillah Saves, S.T., M.T, Mr. Dr. Andi Patriadi, S.T., M.T, and Mrs. Retno Trimurtiningsih, S.T., M.T.

7. References

- Abi Rafdi, M.,dkk. (2018). Potensi Energi Tahunan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Berdasarkan Simulasi Waktu di Sungai Kedung Pasang Kabupaten Pacitan. Surakarta : Matriks Teknik Sipil, 6(1).
- Asdak, C. (1995). Hidrologi Pengolahan Daerah Aliran Sungai. Yogyakarta: Gajah Mada University Prees.
- Chadidjah, S. (n.d.). Wiyoto. 2011."Konsep Teknologi Renewable Energy" Book of Technology Concepts of Renewable Energy. Book of Renewable Energy, Jakarta: Genta Pustaka.
- Departemen Energi & Sumber Daya Mineral. (2009). Pedoman Studi Kelayakan Sipil, Buku 2B. Jakarta: Departemen Energi & Sumber Daya Mineral.
- Hasanuddin, L.,dkk. (2019). Analisis potensi daya pembangkit listrik tenaga mikrohidro (PLTMH) pada Sungai Bone di Kecamatan Pasir Putih Kabupaten Muna. Seminar Nasional Teknologi Terapan Berbasis Kearifan Lokal, 2(1).
- Linsley, R. K., dkk., 1986. Hidrologi Untuk Insinyur. Jakarta : Erlangga
- Notosudjono, D. (2002). Perencanaan PLTMH di Indonesia. BPPT. Jakarta.

Patty, O. F. (1995). Tenaga Air.

- Pengairan, D. P. U. D. J. (2010). Standart Perencanaan Irigasi KP-01, 02, 04, dan 06. Jakarta: Badan Penerbit Pekerjaan Umum.
- Rompas, P. T. D. (2011). Analisis pembangkit listrik tenaga mikrohidro (pltmh) pada daerah aliran sungai ongkak mongondow di desa muntoi kabupaten

bolaang mongondow. Jurnal Penelitian Saintek, 16(2), 160–171.

- Soewarno, S. (1995). Hidrologi: Aplikasi Metode Statistik untuk Analisis Data. Bandung: Nova.
- Sularso, T. H. (2006). Pompa & Kompresor Pemilihan, Pemakaian dan Pemeliharaan, Edisi Keenam. Jakarta: PT Pradya Paramita.
- Triatmodjo, B. (1996). Hidraulika I dan II. Yogyakarta: Beta Offset.
- Triatmodjo, B. (2009). Hidrologi Terapan Cetakan Ke-2. Yogyakarta: Beta Offset.