The Self-Absorption Effect of Ni-63 Beta Source to the Silicon Carbide based Betavoltaic Battery

Swastya Rahastama, Yohannes Dwi Saputra, Abdul Waris


A typical planar structure is the most feasible conceptual design of betavoltaic battery due to its simplicity. The self-absorption of beta source, however, causes a limitation to the geometrical efficiency.  Herein, we tried to investigate the self-absorption event in Ni-63 beta source by changing the geometrical aspects and evaluated its effect on each layer of a 4H-SiC semiconductor as the radiation-electricity converter. The design configuration from previous literature was adopted and the model was developed using Monte Carlo N-Particle X (MCNPX) consists of radioisotope source, semiconductor, and also ohmic contacts. The energy of beta emission was adjusted to the actual Ni-63 beta spectra with an isotropic distribution of ejected particles. The average beta energy deposition degrades along with the addition of source mass thickness, but the n+ substrate has a unique result where a peak is observed at 0.1246 mg/cm2 due to the self-absorption effect. Furthermore, the rectangular surface area magnification gives a positive impact on the beta energy deposition up to 2.48% and the photon average energy deposition up to 137.21%.  The results of average electron absorbed dose are consistent with Oldano-Pasquarelli semi-empirical theory of self-absorption in the beta source, where the upper layer receives a wider angular distribution of particles compared to the lower one, which corresponds to the counting geometrical coefficients.


betavoltaic, Ni-63, radioisotope source, SiC, self-absorption

Full Text:



Krasnov, A. A. dan Legotin, S. A., Advances in the Development of Betavoltaic Power Sources (A Review), Instruments and Experimental Techniques, 63(4), pp.437–452, 2020.

Alam, T. R., Pierson, M. A., dan Prelas, M. A., Beta particle transport and its impact on betavoltaic battery modeling, Applied Radiation and Isotopes, 130(August), pp.80–89, 2017.

Wacharasindhu, T., Composite-Semiconductor-Based Micro Power Source(July), 2012.

Russo, J., Litz, M. S., William Ray, I. I., Berk, H., Cho, H., Bigio, D. I., Weltz, A., dan Alam, T. R., Planar and textured surface optimization for a tritium-based betavoltaic nuclear battery, International Journal of Energy Research, 43(9), pp.4370–4389, 2019.

Oldano, C. dan Pasquarelli, A., Self-absorption and self-scattering effects in the beta particles sources, Nuclear Instruments and Methods, 36(C), pp.192–196, 1965.

Spencer, M. G. dan Alam, T., High power direct energy conversion by nuclear batteries, Applied Physics Reviews, 6(3), 2019.

Rahastama, S. dan Waris, A., Analytical Study of 90Sr Betavoltaic Nuclear Battery Performance Based on p-n Junction Silicon, Journal of Physics: Conference Series, 739(1), 2016.

Theirrattanakul, S. dan Prelas, M., A methodology for efficiency optimization of betavoltaic cell design using an isotropic planar source having an energy-dependent beta particle distribution, Applied Radiation and Isotopes, 127(May), pp.41–46, 2017.

Alam, T. R., Spencer, M. G., Prelas, M. A., dan Pierson, M. A., Design and optimization of radioisotope sources for betavoltaic batteries, International Journal of Energy Research, 42(7), pp.2564–2573, 2018.

Kim, T., Lee, N., Jung, H. K., dan Kim, J. H., Enhancement of energy performance in betavoltaic cells by optimizing self-absorption of beta particles, INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 40(December 2015), pp.522–528, 2016.

Alam, T. R. dan Pierson, M. A., Principles of Betavoltaic Battery Design, Journal of Energy and Power Sources, 3(1), pp.11–41, 2016.

Lei, Y., Yang, Y., Li, G., Liu, Y., Xu, J., Xiong, X., Luo, S., dan Peng, T., Demonstration and aging test of a radiation-resistant strontium-90 betavoltaic mechanism, Applied Physics Letters, 116(15), 2020.

Chen, C., Wang, N., San, H., dan Cheng, Z., High-efficient betavoltaic batteries using graphene-coated TiO2 nanotube arrays, Proceedings of IEEE Sensors, pp.5–7, 2017.

Xu, Z., Liu, Y., Zhang, Z., Chen, W., Yuan, Z., Liu, K., dan Tang, X., Enhanced radioluminescent nuclear battery by optimizing structural design of the phosphor layer, International Journal of Energy Research, 42(4), pp.1729–1737, 2018.

Rahastama, S., Waris, A., Viridi, S., dan Iskandar, F., Optimization of surface passivation parameters in [147Pm]-Si planar p-n junction betavoltaic based on analytical 1-D minority carrier diffusion equation approaches, Applied Radiation and Isotopes, 151(September 2017), pp.226–234, 2019.

Zhang, Z. R., Liu, Y. P., Tang, X. Bin, Xu, Z. H., Yuan, Z. C., Liu, K., dan Chen, W., GaAs low-energy X-ray radioluminescence nuclear battery, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 415(September 2017), pp.9–16, 2018.

Tompkins, R. P., Hogan, K., Pullen, C., Kierzewski, I., Kelley, S., Doumbia, M., Smith, B. A., Shahedipour-Sandvik, S., dan Litz, M., Comparison of Planar vs. Textured Silicon Carbide ( SiC ) Betavoltaic Devices, 2020.

Guo, H., Shi, Y., Zhang, Y., Zhang, Y., dan Han, J., Fabrication of SiC p-i-n betavoltaic cell with 63Ni irradiation source, 2011 IEEE International Conference of Electron Devices and Solid-State Circuits, EDSSC 2011, 2011.

M. Navabpour, B. M., A general Monte Carlo N-Particle transport code, LA12625-M, Version B, 4(December), pp.2–27, 2004.

Lee, K. B., Ni-63 Decay Data, Table De Radionucleides, pp.1–3, 2006.

Guglinski, W., Re-evaluation of Fermi’s theory of beta-decay, International Journal of Fundamental Physical Sciences, 8(2), pp.19–43, 2018.

Zuo, G., Zhou, J., dan Ke, G., A Simple theoretical model for 63Ni betavoltaic battery, Applied Radiation and Isotopes, 82pp.119–125, 2013.

Gorbatsevich, A. A., Danilin, A. B., Korneev, V. I., Magomedbekov, E. P., dan Molin, A. A., Analysis (Simulation) of Ni-63 beta-voltaic cells based on silicon solar cells, Technical Physics, 61(7), pp.1053–1059, 2016.

Svintsov, A. A., Krasnov, A. A., Polikarpov, M. A., Polyakov, A. Y., dan Yakimov, E. B., Betavoltaic battery performance: Comparison of modeling and experiment, Applied Radiation and Isotopes, 137(April), pp.184–189, 2018.

Liu, Y. M., Lu, J. Bin, Li, X. Y., Xu, X., He, R., dan Wang, H. D., A 4H–SiC betavoltaic battery based on a 63Ni source, Nuclear Science and Techniques, 29(11), 2018.

Nikjoo, Hooshang; Uehara, Suzho; Emfietzoglou, D., Interaction of Radiation with Matter, CRC Press, 2012.

Customs, U. S., Protection, B., Nuclear, D., dan Office, D., Compendium of Material Composition Data for Radiation Transport Modeling, 2011.

Kieffer, L. J., Low-Energy electron-Collision cross-Section data. Part II: Electronic-Excitation cross-sections, Atomic Data and Nuclear Data Tables, 1(C), pp.121–287, 1969.

Liu, Y. M., Lu, J. Bin, Li, X. Y., Xu, X., He, R., Zheng, R. Z., dan Wei, G. D., Theoretical Prediction of Diamond Betavoltaic Batteries Performance Using 63Ni, Chinese Physics Letters, 35(7), 2018.

Ishii, K. dan Morita, S., Internal Bremsstrahlung Production by Secondary Electrons Ejected by Proton Impact, Japanese Journal of Applied Physics, 17pp.374–376, 1978.

Cheu, D. S., Adams, T. E., dan Revankar, S. T., Derivation of critical parameters of betavoltaics, International Conference on Nuclear Engineering, Proceedings, ICONE, 9pp.1–9, 2018.

Amato, E., Physics for Radiation Protection, 2014.

Azarov, A. Y., Titov, A. I., Karaseov, P. A., dan Hallén, A., Effect of collision cascade density on radiation damage in SiC, Nuclear Instruments, and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 267(8–9), pp.1247–1250, 2009.

Hunt, S., Nickel-63, Radioactive Material Safety Data Sheet, pp.1–3, 1998.



  • There are currently no refbacks.

Physics Department
Faculty of Mathematics and Natural Sciences
Universitas Tanjungpura


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.