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Abstract 
 

We have discussed the gauge invariance of nonlinear Klein-Gordon equation which describes 
the interaction of electromagnetic initially proposed by Hermann Weyl. The construction of 
nonlinear Klein-Gordon itself is formulated by two classical conservation laws, Hamilton-
Jacobi of relativistic motion and continuity equations. Generally, this equation takes the 
similar concept to the derivation of the nonlinear master Schrödinger ignoring two 
fundamental concepts in ordinary quantum mechanics, Einstein and de Broglie’s postulates. 
In this paper, the proposing for general form of nonlinear Klein-Gordon including the 
external potential and its gauge invariance have been established. However, we have to 
ignore the external potential in order to satisfy gauge invariance. In addition, we also prove 
the derivation of nonlinear Dirac equation for including half-integer spin concept can not 
hold by similar derivation.  

Keywords: nonlinear Klein-Gordon, gauge invariance. 
 
1. Introduction 
 

The definition and properties of the 
nonlinear master Schrödinger equation 
have been discussed in the recent letters 
[1-6] which ignored some aspects, such as 
relativity, spin of particle, and the 
interaction term. In this paper, we have 
discussed that the construction for the 
relativistic motion of particle can be built 
by the same analogy in derivation of 
nonlinear master Schrödinger with the 
additional terms, called quantum 
potentials. Therefore, we define the 
nonlinear Klein-Gordon which is 
formulated by the similar assumption in 
the construction of nonlinear master 
Schrödinger equation without considering 
two fundamental postulates in ordinary 
quantum mechanics, Einstein and de 
Broglie’s postulates, quantization of 
energy and momentum. Actually, for 
constructing the equation, we still start to 
ignore the concept of particle spin, such as 
in ordinary Klein-Gordon equation.  

In the recent letters [1-6], which is 
summarized some of the present works, 
the nonlinear master Schrödinger was 
built from two classical balance equations, 

the Hamilton-Jacobi and continuity 
equations, which assumed that those two 
equations were still hold in the 
microscopic level. In ordinary Klein-
Gordon equation, it is built by 
combination between two important 
postulates in ordinary quantum 
mechanics and the relativistic energy 
equation. In this paper, we did not use 
those two expressions to build the 
nonlinear Klein-Gordon, but we will 
demonstrate that the nonlinear Klein-
Gordon can be derived by Hamilton-Jacobi 
of relativistic motion and continuity 
equation.  

The ordinary Klein-Gordon itself 
represents the relativistic free particle 
motion equation. In this case, we also can 
show that we can always include the 
interaction term for the generalization of 
nonlinear Klein-Gordon equation. This 
interaction term is included from the 
Hamilton-Jacobi equation, such as in the 
classical physics.  However, we also get 
the same problem in the ordinary Klein-
Gordon since our equation contains the 
negative energy.  

The rest of the paper is arranged as 
follow: in section II we discuss the 
derivation of general nonlinear Klein-
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Gordon by extending the Hamilton-Jacobi 
inserting the external potential. In section 
III we construct the form of gauge 
invariance of nonlinear Klein-Gordon 
based on the local gauge theory1 from 
Hermann Weyl’s idea [7] describing the 
interaction of electromagnetic fields. This 
procedure is same as the construction of 
ordinary Klein-Gordon equation applying 
phase transformation in the wave 
function. Unfortunately, the external 
potential term must be ignored for 
preserving gauge invariance. In addition, 
we have to modify the Hamilton-Jacobi 
including the electromagnetic fields.  

For the final discussion, we finally 
prove the failure for constructing 
nonlinear Dirac equation by similar way 
in order to include half-integer spin 
concept. The inserting of that spin 
concept is important for describing the 
motion of electron and its interaction. For 
the closing term, we present our 
conclusions based on the results. 
 
 
2.  Derivation Of Nonlinear Klein-

Gordon And Its General  
 
In the recent letter [1], the derivation 

for constructing the nonlinear master 
Schrödinger did not use the two famous 
postulates principle in quantum 
mechanics, but it used the Hamilton-
Jacobi and continuity equation which 
have been postulated before. For the 
similar way, we also use those two basic 
equations for constructing the nonlinear 
Klein-Gordon. For the simplicity, we start 
from Hamilton-Jacobi of relativistic 
motion and continuity equation which 
have been defined before2 
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1 This theory was initially proposed by Hermann Weyl 
as the symmetry of Maxwell’s equations in classical 
electrodynamics 
2   means the classical action in classical physics. 

where c  and m  mean light velocity and 
rest mass of particle. After making certain 
algebra and combining those two 
equations, one gets the final expression, 
named nonlinear Klein-Gordon  
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where   is the general solution written 
in expression  
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The expression (3) describes the 
relativistic motion of free particle and the 
nonlinear terms are called quantum 
potentials.  

The next purpose is to build the 
general nonlinear Klein-Gordon which 
includes the interaction term. The 
possibility for that construction is to 
generalize the Hamilton-Jacobi of the 
relativistic motion in expression (1) as [8]. 
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where V is identified as an external 
potential term. After that, we have to 
combine together with the continuity 
equation defined in Eq. (2).  

In such condition, after using a little 
algebra, we will get the general form of 
nonlinear Klein-Gordon equation as    
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 where V describes the interaction term. 
However, as stated before, we remind that 
the general solution for that equation 
above still has form in Eq. (4). 
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3.  Gauge Invariance Form 
 

In the several textbooks [9-10], the 
gauge invariance of ordinary Klein-
Gordon has been established. The gauge 
invariance itself is based on the local 
gauge initially proposed by Hermann 
Weyl taken from the analogy of 
connection in general relativity. In this 
section we focus to construct the gauge 
invariance of nonlinear Klein-Gordon 
equation. By seeing the expression (6), we 
can guess that the way for deriving the 
gauge invariance of ordinary Klein-
Gordon should be applied of nonlinear 
Klein-Gordon either. 

Since the wave solution of nonlinear 
Klein-Gordon has the general amplitude 
depends on space and time, it is clear that 
we have to transform the corresponding 
amplitude by local gauge transformation 
      traetratra i ,,,   ,             (7) 
with the   parameter is the function of 
space and time. In the other hand, by 
similar analogy, we generalize the 
differential operators as follow [11]. 
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In this case, we initially state that   and 
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 are unknown potentials3. 
 If we make the condition for the 

amplitude 
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we can easily show that the generalization 
of nonlinear Klein-Gordon will be 
invariant under simultaneous 
transformation 
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3 Finally, we recognize that those two potentials are 
scalar and vector potentials in classical electrodynamics 

if only if the interaction potential should 
be zero, 0V 4. In other words, in the 
presence of electromagnetic field, the 
nonlinear Klein-Gordon should be                    
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4.   Failure of Construction Nonlinear 
Dirac Equation  

 
In quantum field theory, Dirac 

proposed the equation of relativistic 
particle motion in order to include the 
half-integer spin concept by factorizing 
ordinary Klein-Gordon and introducing 
Gamma matrices containing Pauli spin 
matrices. According to him, Dirac 
equation can be written as  
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with gamma matrices are defined 
 












10

010 , 










0

0



 




,       (17) 

 
and  is a standard vector form of Pauli 
spin matrix (all components of Pauli spin 
matrices will be given in appendix).   

It has been discussed that the 
construction of nonlinear Klein-Gordon is 
built by adding the quantum potential 
terms achieved by expanding the general 
wave function and concerning only in real 
component. The potentials are the terms 
containing Planck constant,  , in real 
component. By this idea, we follow the 
instruction given above by writing the 
general solution in Eq. (4) into Eq. (16). 
After separating the real and imaginary 
components, we find 

 
 
 

                                                
4 It is clear since the phase term, , was not 
transformed under local gauge transformation 
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 real component 
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 imaginary component 
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Since the real component has no 
Planck constant term, it is clear that no 
quantum potential. We directly conclude 
that nonlinear Dirac equation can not be 
constructed by the method. Thus, we 
have proven that the inserting of half-
integer spin can not be built.  

 
 
5.  Conclusion 

 
In this letter, the idea for establishing 

of the derivation of gauge invariance for 
general nonlinear Klein-Gordon equation 
has been established. This construction is 
based on the similar way to the 
construction of gauge invariance for 
nonlinear master Schrödinger which 
extends the definitions of differential 
operators.  The construction itself has 
ignored two fundamental postulates in 
ordinary quantum mechanics, Einstein 
and de Broglie’s postulates.   

In addition, we have proven that the 
gauge invariance only hold if one removes 
the external potential term. This fact is a 
different case if one considers the general 
form of linear Klein-Gordon keeping the 
interaction term in quantum field theory. 
However, in this case we haven’t made 
any prediction whether the solution for 
negative energy can be accepted or not. 

To completely describe the 
characteristics of electron, one has to 
consider half-integer spin concept. The 
not interesting case is the failure of 
including that concept when extends the 
Dirac equation into nonlinear equation. 
We conclude this truth by considering 
Hamilton-Jacobi having no Planck 
constant term. Even though we get the 
failure, the idea is interesting because the 
main purpose of the construction is to 
build the general relativistic quantum 
mechanics initially proposed by Einstein 
and de Broglie in the early time.  
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6.  Appendix   

 
In classical mechanics, the 

corresponding three-dimensional 
Hamilton-Jacobi of relativistic motion and 
continuity equations are generally defined 
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where all of those symbols have the usual 
meaning. The reader can review for more 
detail in the following textbooks [12-14]. 

In discussion of nonlinear Klein-
Gordon, those symbols are transformed 
into the appropriate wave quantities 
below 
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is the famous Lorentz contraction. In our 
convention, all the components of Pauli 
spin matrices are given by 
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