Sistem Pendukung Keputusan Penyakit Stroke menggunakan Metode Fuzzy Tsukamoto dengan Basis Pengetahuan Framingham Risk Score
Abstract
Penyakit stroke adalah salah kerusakan pada otak yang muncul secara mendadak akibat gangguan peredaran darah otak non-traumatis. Gangguan tersebut dapat berupa pembuluh darah tersumbat yang dapat menghambat atau menghentikan aliran darah ke otak. Penyakit stroke di Indonesia telah mengalami peningkatan, angka prevalensi per mil telah meningkat dari 7% pada tahun 2013 menjadi sebesar 10,9% pada tahun 2018. Penyakit stroke dapat dikurangi dengan melakukan deteksi dini pada masyarakat supaya dapat melakukan tindakan preventif. Deteksi dini penyakit stroke memiliki kondisi data yang semi terstruktur karena banyaknya faktor untuk mengidentifikasi risiko penyakit stroke. Kondisi data semi terstruktur akan mempersulit deteksi dini penyakit stroke sehingga diperlukan alat bantu berupa sistem pendukung keputusan (SPK). Penelitian dilakukan dengan membangun sistem pendukung keputusan deteksi dini penyakit stroke menggunakan metode Fuzzy Tsukamoto. Model basis pengetahuan menggunakan Framingham Risk Score sebagai dasar untuk pembuatan aturan (rule) klasifikasi dengan 120 data pasien Puskesmas Kendalkerep Kota Malang. Hasil pengujian yang didapatkan adalah akurasi sebesar 0,8444, presisi sebesar 0,7801, recall sebesar 0,796, specificity sebesar 0,8891, dan F1 score sebesar 0,751.
Keywords
Full Text:
PDFReferences
WHO, “Global health estimates: Leading causes of death,” 2019.
Badan Penelitian dan Pengembangan Kesehatan RI, “Laporan Nasional Riset Kesehatan Dasar 2018,” Kementrian Kesehatan Republik Indonesia, Jakarta, 2018.
A. K. Boehme, C. Esenwa and M. S. V. Elkind, “Stroke Risk Factors, Genetics, and Prevention,” Circulation Research, vol. 120, no. 3, pp. 472-495, 2017.
X. Huang, H. Lv, Z. Liu, Y. Liu and X. Yang, “Study on the predictive ability of emergency CHADS2 score and CHA2DS2-VASc score for coronary artery disease and prognosis in patients with acute ST-segment elevation myocardial infarction,” Journal of Thoracic Disease, vol. 14, no. 7, pp. 2611-2620, 2022.
G. Çetinkal, C. Koçaş, B. B. Koçaş, Ş. Arslan, O. Abacı, O. Ş. Karaca, Y. Dalgıç, Ö. S. Ser, K. Keskin, A. Yıldız and S. M. Doğan, “Comparative performance of AnTicoagulation and Risk factors In Atrial fibrillation and Global Registry of Acute Coronary Events risk scores in predicting long-term adverse events in patients with acute myocardial infarction,” Anatolian Journal of Cardiology, vol. 20, no. 2, pp. 77-84, 2018.
L. Jahangiry, M. A. Farhangi and F. Rezaei, “Framingham risk score for estimation of 10-years of cardiovascular diseases risk in patients with metabolic syndrome,” Journal of Health, Population and Nutrition, vol. 36, 2017.
R. B. D'Agostino, R. S. Vasan, M. J. Pencina, P. A. Wolf, M. Cobain, J. M. Massaro and W. B. Kannel, “General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study,” Circulation, vol. 117, no. 6, pp. 743-753, 2008.
M. C. Claudy, K. Aquino, and M. Graso, “Artificial Intelligence Can’t Be Charmed: The Effects of Impartiality on Laypeople’s Algorithmic Preferences,” Frontiers in Psychology, vol. 13, 2022.
J. K. Kazak and J. v. Hoof, “Decision support systems for a sustainable management of the indoor and built environment,” Indoor and Built Environment, vol. 27, no. 10, pp. 1303-1306, 2018.
D. A. Putra, M. D. S. Sanapiah, A. I. Hanifah and T. Afirianto, “SEED (Stoke Disease Early Detection Application) - Rancang Bangun Aplikasi Mobile Berbasis Android untuk Mendiagnosis Gejala Dini Penyakit Stroke Menggunakan K-Nearest Neighbor (K-NN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 3, pp. 287-294, 2019.
Suharjito, Diana, Yulyanto and A. Nugroho, “Mobile Expert System Using Fuzzy Tsukamoto for Diagnosing Cattle Disease,” Procedia Computer Science, vol. 116, pp. 27-36, 2017.
Y. Yun, D. Ma and M. Yang, “Human–computer interaction-based Decision Support System with Applications in Data Mining,” Future Generation Computer Systems, vol. 114, pp. 285-289, 2021.
A. L. Turban, Decision Support Systems and Intelligent Systems, New Delhi: Prentice-Hall of India, 2007.
İ. Kaya, M. Çolak and F. Terzi, “A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making,” Energy Strategy Reviews, vol. 24, pp. 207-228, 2019.
I. Siksnelyte, E. K. Zavadskas, D. Streimikiene and D. Sharma, “An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues,” Energies, vol. 11, no. 10, 2018.
P. Ampririt, Y. Liu, M. Ikeda, K. Matsuo, L. Barolli and M. Takizawa, “Effect of Slice Priority for admission control in 5G Wireless Networks: A comparison study for two Fuzzy-based systems considering Software-Defined-Networks,” Journal of High Speed Networks, vol. 26, pp. 169-183, 2020.
K. Raza, “Fuzzy logic based approaches for gene regulatory network inference,” Artificial Intelligence In Medicine, vol. 97, pp. 189-203, 2019.
A. Jain and A. Sharma, “Membership Function Formulation Methods for Fuzzy Logic Systems: A Comprehensive Review,” Journal of Critical Reviews, vol. 7, no. 19, pp. 8717-8733, 2020.
P. K. Gupta and P. K. Muhuri, “Extended Tsukamoto’s inference method for solving multi-objective linguistic optimization problems,” Fuzzy Sets and Systems, vol. 377, pp. 102-124, 2019.
M. Koklu, S. Sarigil and O. Ozbek, “The use of machine learning methods in classification of pumpkin seeds (Cucurbita pepo L.),” Genetic Resources and Crop Evolution, vol. 68, pp. 2713-2726, 2021.
K. Ali, Z. A. Shaikh, A. A. Khan and A. A. Laghari, “Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer,” Neuroscience Informatics, vol. 2, no. 4, 2022.
L. N. Hakim, “Urgensi Revisi Undang-Undang tentang Kesejahteraan Lanjut Usia,” Aspirasi: Jurnal Masalah-Masalah Sosial, vol. 11, no. 1, pp. 43-55, 2020.
National Heart, Lung, and Blood Institute, The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, Bethesda Md.: National Institutes of Health, National Heart, Lung and Blood Institute, National High Blood Pressure Education Program, 2003.
A. H. Lichtenstein, “Encyclopedia of Food Sciences and Nutrition,” Atherosclerosis, pp. 338-347, 2003.
American Diabetes Association, “Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020},” Diabetes Care, vol. 43, pp. S14-S31, 2019.
J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder and N. Seliya, “A survey on addressing high‐class imbalance in big data,” Journal of Big Data, vol. 5, no. 42, 2018.
DOI: https://doi.org/10.26418/jp.v8i2.56362
Refbacks
- There are currently no refbacks.