Pemodelan Perkembangan New Cases Covid-19 di Indonesia Menggunakan Multi-Layer Perceptron dan Support Vector Machine

Muhammad Ibnu Choldun Rachmatullah

Abstract


Meningkatnya ketersediaan data historis dalam jumlah besar dan kebutuhan untuk membuat perkiraan yang akurat tentang perilaku masa depan menjadi perhatian khusus dalam mencari teknik yang dapat menarik kesimpulan dari mengamati hubungan antara data tertentu, antara data masa lalu dan data masa depan. Domain peramalan mengalami peningkatan sejak tahun 1960-an, dengan metode statistik linier, misalnya menggunakan model ARIMA. Baru-baru ini, model pembelajaran mesin telah menarik perhatian dan dapat digunakan sebagai teknik lain selain model statistik klasik untuk kasus peramalan. Penelitian ini memprediksi perubahan kasus baru positif Covid-19 per satu juta penduduk (new cases per million Covid-19) di Indonesia menggunakan pembelajaran mesin. Pemodelan perubahan new cases per million diperlukan karena penyakit ini merupakan penyakit baru, sehingga sampai saat ini belum ada pemodelan deret waktu yang cukup akurat untuk menggambarkan kasus tersebut. Teknik machine learning yang akan digunakan adalah Multi-Layer Perceptron (MLP) dan Support Vector Machine (SVM) dan dibandingkan kinerja dari kedua teknik tersebut. Dari hasil perhitungan kinerja, prediksi new cases per million Covid-19 yang dilakukan dengan menggunakan SVM(RMSE = 9,053) memiliki kinerja yang lebih baik dibandingkan dengan menggunakan MLP (RMSE = 10,284). Nilai RMSE yang lebih kecil menunjukkan kinerja yang lebih baik.


Keywords


New cases per million; Covid-19; MLP; SVM; RMSE

Full Text:

PDF

References


T. Hastie, R. Tibshirani and J.H. Friedman, “The Elements of Statistical Learning: Data mining, Inference, and Prediction”. Springer, New York: Springer, 2009.

C.C. Aggarwal, Neural Networks and Deep Learning. New York: Springer International Publishing, 2018.

Ahmed, K. Nesreen, Atiya, F. Amir, Gayar and Hisham, “Empirical Comparison of Machine Learning Models for Time Series Forecasting”, Econometric Reviews, Vol. 29, No. 5, PP. 594-621, 2010.

F. Martínez, M.P. Frías and M.D. Pérez, “ A Methodology for Applying kNearest Neighbor to Time Series Forecasting”, Artificial Intelligence Review, Vol. 52, PP. 2019–2037, 2019. https://doi.org/10.1007/s10462-017-9593-z1

F. Saâdaoui and H. Rabbouch,”A Wavelet-Based Hybrid Neural Network for Short-Term Electricity Prices Forecasting”, Artificial Intelligence Review, Vol. 52, PP. 649–669, 2019. https://doi.org/10.1007/s10462-019-09702-x

L.F.S. Vilela, R.C. Leme and C.A.M, “Forecasting financial series using clustering methods and support vector regression”, Artificial Intelligence Review, Vol. 52, PP. 743–773, 2019. https://doi.org/10.1007/s10462-018-9663-x

M. Kamola and P. Arabas, "Improving Time-Series Demand Modeling in Hospitality Business by Analytics of Public Event Datasets", IEEE Access, Vol. 8, PP. 53666-53677, 2020.

B. Tanuwijaya, G. Selvachandran and L.H. Son, "A Novel Single Valued Neutrosophic Hesitant Fuzzy Time Series Model: Applications in Indonesian and Argentinian Stock Index Forecasting," IEEE Access, Vol. 8, PP. 60126-60141, 2020.

Y. Yang and Y. Yang, "Hybrid Method for Short-Term Time Series Forecasting Based on EEMD”, IEEE Access, Vol. 8, PP. 61915-61928, 2020.

G. Jeong, S. Park and G. Hwang, "Time Series Forecasting Based Day-Ahead Energy Trading in Microgrids: Mathematical Analysis and Simulation”, IEEE Access, Vol. 8, PP. 63885-63900, 2020.

S.A. Rizvi, M. Umair and M.A. Cheema, “Clustering of Countries for COVID-19 Cases based on Disease Prevalence”, Health Systems and Environmental Indicators, 2021. https://doi.org/10.1101/2021.02.15.21251762

Y. Zhu et al., “Mix Contrast for COVID-19 Mild-to-Critical Prediction,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 68, no. 12, pp. 3725–3736, 2021.

V. K. Gupta, A. Gupta, D. Kumar, and A. Sardana, “Prediction of COVID-19 Confirmed , Death , and Cured Cases in India Using Random Forest Model,” BIG DATA MINING AND ANALYTICS, vol. 4, no. 2, pp. 116–123, 2021, doi: 10.26599/BDMA.2020.9020016.

M. Shawaqfah and F. Almomani, “Results in Physics Forecast of the outbreak of COVID-19 using artificial neural network : Case,” Results Phys., vol. 27, no. June, p. 104484, 2021, doi: 10.1016/j.rinp.2021.104484.

M. Marzouk, N. Elshaboury, A. Abdel-latif, and S. Azab, “Deep learning model for forecasting COVID-19 outbreak in Egypt,” Process Saf. Environ. Prot., vol. 153, no. March 2020, pp. 363–375, 2021, doi: 10.1016/j.psep.2021.07.034.

M. Wieczorek, J. Silka, and M. Wozniak , N. Science and C. Phenomena, “ Neural network powered COVID-19 spread forecasting model,” Chaos, Solitons and Fractals, vol. 140, 2020, doi: 10.1016/j.chaos.2020.110203.

H. Friji, R. Hamadi, H. Ghazzai, S. Member, H. Besbes, and Y. Massoud, “A Generalized Mechanistic Model for Assessing and Forecasting the Spread of the COVID-19 Pandemic,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3051929

A. Alarjani, T. Nasseef, S. M. Kamal, B. V. S. Rao, M. Mahmud, and S. Uddin, “Application of Mathematical Modeling in Prediction of COVID-19 Transmission Dynamics,” Arab. J. Sci. Eng., 2022, doi: 10.1007/s13369-021-06419-4.

F. Rustam, A. A. Reshi, and A. Mehmood, “COVID-19 Future Forecasting Using Supervised Machine Learning Models,” IEEE Access, vol. 8, pp. 101489–101499, 2020, doi: 10.1109/ACCESS.2020.2997311.

R. Lotfi, K. Kheiri, A. Sadeghi, and E. Babaee, “An extended robust mathematical model to project the course of COVID-19 epidemic in Iran,” Ann. Oper. Res., 2022, doi: 10.1007/s10479-021-04490-6.

A. L. I. Arjomandi-nezhad and A. Ahmadi, “Pandemic-Aware Day-Ahead Demand Forecasting Using Ensemble Learning,” IEEE Access, vol. 10, pp. 7098–7106, 2022, doi: 10.1109/ACCESS.2022.3142351.

F.Handayani, et al., “Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network dalam Prediksi Penyakit Jantung,” urnal Edukasi dan Penelitian Informatika, vol. 7, no. 3, pp. 2891–2904, 2021.

S. Agrebi and A. Larbi, “Use of artificial intelligence in infectious diseases”, Artificial Intelligence in Precision Health, PP. 415-438, 2020.

G. Shmueli, P.C. BruceI. Yahav and N.R. Patel,” Data Mining for Business Analytics: Concepts, Techniques, and Applications”. New Jersey: John Wiley & Sons, 2020.

Q.H. Nguyen, H.B. Ly, L.S. and N. Al-Ansari,” Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil”, Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/4832864

S. Namasudra, S. Dhamodharavadhani and R. Rathipriya, “Nonlinear Neural Network Based Forecasting Model for Predicting COVID‑19 Cases”, Neural Processing Letters, 2021. https://doi.org/10.1007/s11063-021-10495-w4.




DOI: https://doi.org/10.26418/jp.v8i2.53919

Refbacks

  • There are currently no refbacks.