Deep Neural Network untuk Prediksi Stroke

Anas Faisal, Agus Subekti

Abstract


Pada Tahun 2019 Organisasi Kesehatan Dunia (WHO) mendudukkan stroke sebagai tujuh dari sepuluh penyebab utama kematian. Kementerian Kesehatan menggolongkan stroke sebagai penyakit katastropik karena dampaknya luas secara ekonomi dan sosial. Oleh karena itu, diperlukan peran dari teknologi informasi untuk memprediksi stroke guna pencegahan dan perawatan dini. Analisis data yang memiliki kelas tidak seimbang mengakibatkan ketidakakuratan dalam memprediksi stroke. Penelitian ini membandingkan tiga teknik oversampling untuk mendapatkan model prediksi yang lebih baik. Data kelas yang sudah diseimbangkan diuji menggunakan tiga model Arsitektur Deep Neural Network (DNN) dengan melakukan optimasi pada beberapa parameter yaitu optimizer, learning rate dan epoch. Hasil paling baik didapatkan teknik oversampling SMOTETomek dan Arsitektur DNN dengan lima hidden layer, optimasi Adam, learning rate 0.001 dan jumlah epoch 500. Skor akurasi, presisi, recall, dan f1-score masing-masing mendapatkan 0.96, 0.9614, 0.9608 dan 0.9611.

Keywords


Deep Learning; Deep Neural Network; SMOTE; Tomek links; Stroke; Klasifikasi

Full Text:

PDF

References


A. Fitri, N. Masruriyah, T. Djatna, M. K. D. Hardhienata, H. H. Handayani, and D. Wahiddin, “Predictive Analytics for Stroke Disease,” pp. 13–16, 2020, doi: 10.1109/ICIC47613.2019.8985716.

C. C. Peng, S. H. Wang, S. J. Liu, Y. K. Yang, and B. H. Liao, “Artificial Neural Network Application to the Stroke Prediction,” 2nd IEEE Eurasia Conf. Biomed. Eng. Healthc. Sustain. 2020, ECBIOS 2020, pp. 130–133, 2020, doi: 10.1109/ECBIOS50299.2020.9203638.

P. Songram and C. Jareanpon, “A Study of Features Affecting on Stroke Prediction Using Machine Learning,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11909 LNAI, pp. 216–225, 2019, doi: 10.1007/978-3-030-33709-4_19.

S. Ray, K. Alshouiliy, A. Roy, A. Alghamdi, and D. P. Agrawal, “Chi-Squared Based Feature Selection for Stroke Prediction using AzureML,” 2020 Intermt. Eng. Technol. Comput. IETC 2020, 2020, doi: 10.1109/IETC47856.2020.9249117.

P. Chantamit-O-Pas and M. Goyal, “Prediction of stroke using deep learning model,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10638 LNCS, pp. 774–781, 2017, doi: 10.1007/978-3-319-70139-4_78.

M. Rajora, M. Rathod, and N. S. Naik, “Stroke Prediction Using Machine Learning in a Distributed Environment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12582 LNCS, pp. 238–252, 2021, doi: 10.1007/978-3-030-65621-8_15.

S. Cheon and J. Kim, “The Use of Deep Learning to Predict Stroke Patient Mortality,” 2019, doi: doi.org/10.3390/ijerph16111876.

A. F. N. Masruriyah, T. Djatna, M. K. D. Hardhienata, H. H. Handayani, and D. Wahiddin, “Predictive Analytics For Stroke Disease,” pp. 13–16, 2020, doi: 10.1109/ICIC47613.2019.8985716.

M. Rajora, M. Rathod, and N. S. Naik, “Stroke prediction using machine learning in a distributed environment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12582 LNCS, pp. 238–252, 2021, doi: 10.1007/978-3-030-65621-8_15.

Fedesoriano, “Stroke Prediction Dataset,” Kaggle, 2021. https://www.kaggle.com/fedesoriano/stroke-prediction-dataset (accessed Mar. 06, 2021).

B. Kovács, F. Tinya, C. Németh, and P. Ódor, “SMOTE: Synthetic Minority Over-sampling Technique,” Ecol. Appl., vol. 30, no. 2, pp. 321–357, 2020, doi: 10.1002/eap.2043.

K. A. N. and B. S. B Santoso, H Wijayanto, “Synthetic Over Sampling Methods for Handling Class Imbalanced Problems: A Review,” Water (Switzerland), vol. 26, no. 2, pp. 1–72, 2017, doi: doi:10.1088/1755-1315/58/1/012031.

K. He, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” Delving Deep into Rectifiers Surpassing Human-Level Perform. ImageNet Classif., 2015, doi: 10.1109/ICCV.2015.123.

S. Sharma and S. Sharma, “Activation Functions in Neural Networks,” vol. 4, no. 12, pp. 310–316, 2020.

D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” Adam A Method Stoch. Optim., pp. 1–15, 2015.

A. Labach, H. Salehinejad, and S. Valaee, “Survey of Dropout Methods for Deep Neural Networks,” 2019, [Online]. Available: http://arxiv.org/abs/1904.13310.

T. D. K. Thara, P. S. Prema, and F. Xiong, “Auto-Detection of Epileptic Seizure Events Using Deep Neural Network with Different Feature Scaling Techniques,” Pattern Recognit. Lett., vol. 128, pp. 544–550, 2019, doi: 10.1016/j.patrec.2019.10.029.

J. Hao, “Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language,” vol. XX, no. X, pp. 1–14, 2019, doi: 10.3102/1076998619832248.

A. Liu, J. Ghosh, and C. Martin, “Generative Oversampling for Mining Imbalanced Datasets,” Int. Conf. Data Min., pp. 25–28, 2007.

A. Tharwat, “Classification Assessment Methods,” Appl. Comput. Informatics, vol. 17, no. 1, pp. 168–192, 2018, doi: 10.1016/j.aci.2018.08.003.

T. Djatna, M. Kusuma, D. Hardhienata, A. Fitri, and N. Masruriyah, “An intuitionistic Fuzzy Diagnosis Analytics for Stroke Disease,” J. Big Data, 2018, doi: 10.1186/s40537-018-0142-7.

M. Gordon and M. Kochen, “Recall‐precision trade‐off: A derivation,” J. Am. Soc. Inf. Sci., vol. 40, no. 3, pp. 145–151, 1989, doi: 10.1002/(SICI)1097-4571(198905)40:3<145:AID-ASI1>3.0.CO;2-I.

F. Ri et al., “Effective Prediction of Three Common Diseases by Combining SMOTE with Tomek links Technique for Imbalanced Medical Data,” vol. 2016, pp. 225–228, 2016, doi: 10.1109/ICOACS.2016.7563084.




DOI: https://doi.org/10.26418/jp.v7i3.50094

Refbacks

  • There are currently no refbacks.