Sistem Deteksi Kelainan Neuromuscular Menggunakan Adaptive Neuro Fuzzy Inference System dan Dekomposisi Wavelet Elektromyogram

Nuryani Nuryani, Iftita Ida Sofia, Mohtar Yunianto

Abstract


Sistem neuromuscular terdiri dari saraf motorik dan otot rangka yang menghasilkan aktivitas kelistrikan pada otot dan menyebabkan otot dapat berkontraksi dan menghasilkan gerak tubuh. Gangguan neuromuscular dapat terjadi pada sel saraf yang dinamakan Neuropathy dan pada sel otot yang dinamakan Myopathy. Aktivitas kelistrikan pada otot direkam melalui suatu alat yang dinamakan Electromiography (EMG). Pada penelitian ini dilakukan identifikasi sinyal EMG pasien sehat, myopathy dan neuropathy. Neuropathy merupakan gangguan yang disebabkan oleh kerusakan sel saraf. Myopathy merupakan gangguan yang disebabkan oleh kerusakan sel otot. Penanganan dan pengobatan myopathy dan neuropathy berbeda, sehingga diperlukan suatu metode yang dapat mendiagnosis dengan tepat jenis gangguan yang dialami. Analisis karakteristik sinyal EMG dilakukan menggunakan metode dekomposisi Wavelet Discrete Dyadic dan variasi fitur Root Mean Square (RMS), approximate entropy, spectral entropy dan Singular Value Decompotition (SVD) entropy. Sinyal karakteristik yang diperoleh di identifikasi menggunakan metode klasifikasi Adaptive Neuro Fuzzy Inference System (ANFIS). Performa ANFIS dalam mengidentifikasi karakteristik sinyal EMG pada masing-masing koefisien dekomposisi, menghasilkan performa terbaik pada koefisien aproksimasi ke-5 (cA5), dengan akurasi 100%, sensitivitas 100% dan spesivitas 100%.


Keywords


EMG; Myopathy; Neuropathy; DWT; ANFIS

Full Text:

PDF

References


Rahyusalim. (2018). Intra-Operative Nerve Monitoring Dalam Praktik Klinis Edisi Pertama. Depok : Media Aesculapius.

Michell.A.W,. (2013). Understanding EMG. Cambridge UK : Oxford University Press.

Deenen.J.C., Horlings.C.G., Verschuuren.J.J., Verbeek.A.L., & van Engelen.B.G. (2015). The Epidemiology of Neuromuscular Disorders: A Comprehensive Overview of the Literature. Journal of neuromuscular diseases, 2(1), 73-85.

Emery A. E. (1991). Population frequencies of inherited neuromuscular diseases a world survey. Neuromuscular disorders (NMD), 1(1), 19–29.

Weiss, L., Weiss, J., & Julie Silver. (2004). Easy EMG: A Guide to Performing Nerve Conduction Studies and Electro-myography. London : Elsevier Inc.

Bhuvanesari, P., & Kumar, J.S. (2014). Classification of elec-tromyography signal using wavelet decomposition method. IEEE International Conference on Computational Inteligence and Computing Research, December 18-20, Coimbatore In-dia.

Singh, A., Dutta, M.K., & Travieso, C.M. (2017). Analysis of EMG Signals for Automated Diagnosis of Myopathy. 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), 628-631.

Robinson, C.G., & Chandrasekaran, R. (2018). FIS Based Abnormality Classification. International Journal of Research in Engineering, IT and Social Science, Des 19, Vol 08(12), 101-110.

Achmamad, A., & Jbari, A. (2020). A comparative study of wavelet families for electromyography signal classification based on discrete wavelet transform. Bulletin of Electrical Engineering and Informatics, 9(4), 1420-1429.

Nuryani, N., Ling, S. H., & Nguyen, H. T. (2012, June). Hy-brid particle swarm-based fuzzy support vector machine for hypoglycemia detection. In 2012 IEEE International Confer-ence on Fuzzy Systems (pp. 1-6).

Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark,R.G.,… Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), E215–E220.

Gregory R.L, Gommers, R., Wasilewski, F., Wohlfahrt, K., O’Leary, A. (2019). PyWavelets: A Python package for wavelet analysis. Journal of Open Source Software, 4(36), 1237.

Raphael, V,. Tsang, J.M.F., Yadav, P.S., & Kapetanovic, A.L. (2018). EntroPy 0.1.0: A python package for analisis entropy fitur extraction. Raphaelvallat.com/antropy

Nuryani, N., & Nugroho, A. S. (2019), Identification of atri-al fibrillation using descriptive statistic features and adaptive Neuro-Fuzzy inference system. Journal of Physics: Confer-ence Series Vol. 1153, No. 1, p. 012043)

Afdala, A., Nuryani, N., & Nugroho, A. S. (2017). Automatic Detection of atrial fibrillation using basic Shannon entropy of RR Interval feature. In Journal of Physics: Conference Series, Vol. 795, No. 1, p. 012038.




DOI: https://doi.org/10.26418/jp.v7i3.49966

Refbacks

  • There are currently no refbacks.