Perbandingan Model Klasifikasi untuk Evaluasi Kinerja Akademik Mahasiswa
Abstract
Keywords
Full Text:
PDFReferences
C. Romero and S. Ventura, “Educational data mining and learning analytics: An updated survey,” WIREs Data Min. Knowl. Discov., vol. 10, no. 3, pp. 1–21, May 2020, doi: 10.1002/widm.1355.
A. Bisri and R. Rachmatika, “Integrasi Gradient Boosted Trees dengan SMOTE dan Bagging untuk Deteksi Kelulusan Mahasiswa,” J. Nas. Tek. Elektro dan Teknol. Inf., 2019, doi: 10.22146/jnteti.v8i4.529.
“Penerapan Adaboost untuk Penyelesaian Ketidakseimbangan Kelas pada Penentuan Kelulusan Mahasiswa dengan Metode Decision Tree,” J. Intell. Syst., 2015.
A. Azahari, Y. Yulindawati, D. Rosita, and S. Mallala, “Komparasi Data Mining Naive Bayes dan Neural Network memprediksi Masa Studi Mahasiswa S1,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, p. 443, May 2020, doi: 10.25126/jtiik.2020732093.
A. M. Shahiri, W. Husain, and N. A. Rashid, “A Review on Predicting Student’s Performance Using Data Mining Techniques,” 2015, doi: 10.1016/j.procs.2015.12.157.
B. K. Francis and S. S. Babu, “Predicting Academic Performance of Students Using a Hybrid Data Mining Approach,” J. Med. Syst., 2019, doi: 10.1007/s10916-019-1295-4.
B. Guo, R. Zhang, G. Xu, C. Shi, and L. Yang, “Predicting Students Performance in Educational Data Mining,” 2016, doi: 10.1109/ISET.2015.33.
C. Jalota and R. Agrawal, “Analysis of Educational Data Mining using Classification,” 2019, doi: 10.1109/COMITCon.2019.8862214.
N. A. Yassein, R. G. M Helali, and S. B. Mohomad, “Predicting Student Academic Performance in KSA using Data Mining Techniques,” J. Inf. Technol. Softw. Eng., 2017, doi: 10.4172/2165-7866.1000213.
A. U. Khasanah and Harwati, “A Comparative Study to Predict Student’s Performance Using Educational Data Mining Techniques,” 2017, doi: 10.1088/1757-899X/215/1/012036.
Y. Y. Song and Y. Lu, “Decision tree methods: applications for classification and prediction,” Shanghai Arch. Psychiatry, 2015, doi: 10.11919/j.issn.1002-0829.215044.
S. J. Rigatti, “Random Forest,” J. Insur. Med., 2017, doi: 10.17849/insm-47-01-31-39.1.
G. Biau, B. Cadre, and L. Rouvière, “Accelerated gradient boosting,” Mach. Learn., 2019, doi: 10.1007/s10994-019-05787-1.
S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, “Efficient kNN classification with different numbers of nearest neighbors,” IEEE Trans. Neural Networks Learn. Syst., 2018, doi: 10.1109/TNNLS.2017.2673241.
E. Christodoulou, J. Ma, G. S. Collins, E. W. Steyerberg, J. Y. Verbakel, and B. Van Calster, “A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models,” Journal of Clinical Epidemiology. 2019, doi: 10.1016/j.jclinepi.2019.02.004.
S. Liu et al., “Cambricon: An Instruction Set Architecture for Neural Networks,” 2016, doi: 10.1109/ISCA.2016.42.
C. Zhang et al., “A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification,” ISPRS J. Photogramm. Remote Sens., 2018, doi: 10.1016/j.isprsjprs.2017.07.014.
D. A. Pisner and D. M. Schnyer, “Support vector machine,” in Machine Learning: Methods and Applications to Brain Disorders, 2019.
S. ElAtia, D. Ipperciel, and O. R. Zaïane, Data Mining And Learning Analytics: Applications in Educational Research. 2016.
I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques. 2016.
DOI: https://doi.org/10.26418/jp.v6i3.43097
Refbacks
- There are currently no refbacks.