Prediksi Waktu Kedatangan Pelanggan Servis Kendaraan Bermotor Berdasarkan Data Historis menggunakan Support Vector Machine

Benni Agung Nugroho, Andika Kurnia Adi Pradana, Ellya Nurfarida

Abstract


Dealer kendaraan perlu menjaga hubungan baik dengan pelanggan sehingga inti bisnis dealer dapat berlanjut dan berkembang. Salah satu strategi yang digunakan adalah memprediksi kapan pelanggan akan berkunjung lagi untuk servis kendaraan (layanan perawatan atau perbaikan kendaraan) berdasarkan analisis data riwayat kunjungan pelanggan. Dengan hasil prediksi berupa hari kedatangan pelanggan dimasa depan maka dealer kendaraan dapat mengingatkan pelanggan tentang kapan waktunya servis kendaraan. Support vector machine (SVM) adalah sebuah model pembelajaran mesin (machine learning) yang menggunakan hyperplane dan support-vector untuk memisahkan kelas dalam suatu ruang dimensi secara optimal sehingga sesuai untuk digunakan dalam pemecahan masalah prediksi waktu kedatangan pelanggan. SVM diimplementasikan untuk memprediksi kapan pelanggan akan datang lagi dimasa depan untuk perbaikan atau perawatan kendaraan. Hasil menunjukkan bahwa, dengan pemilihan metode yang tepat, SVM dapat memprediksi waktu kedatangan pelanggan dengan tingkat akurasi mencapai  92.5% berdasarkan validasi K-Fold cross-validation pada data latih dan mencapai rata-rata 97.33% untuk pengukuran nilai presisi, akurasi dan recall pada data uji

Keywords


Support Vector; SVM; Klasifikasi; Prediksi; Hyperplane; Kedatangan Pelanggan

Full Text:

PDF

References


C. Murry, “Advertising in Vertical Relationships: An Equilibrium Model of the Automobile Industry,” SSRN Electron. J., 2017.

A. Payne and P. Frow, “A strategic framework for customer relationship management,” J. Mark., 2005.

Bain & Company, “Management Tools - Customer Relationship Management,” bain.com, 2018. [Online]. Available: https://www.bain.com/insights/management-tools-customer-relationship-management. [Accessed: 27-Jan-2020].

Suyanto, “Support Vector Machine,” in Machine Learning Tingkat Dasar dan Lanjut, 1st ed., Bandung: Penerbit INFORMATIKA Bandung, 2018, p. 99.

M. Yang, C. Chen, L. Wang, X. Yan, and L. Zhou, “Bus arrival time prediction using support vector machine with genetic algorithm,” Neural Netw. World, vol. 26, no. 3, pp. 205–217, 2016.

Y. Fu, Z. Li, H. Zhang, and P. Xu, “Using Support Vector Machine to Predict Next Day Electricity Load of Public Buildings with Sub-metering Devices,” in Procedia Engineering, 2015.

M. W. Huang, C. W. Chen, W. C. Lin, S. W. Ke, and C. F. Tsai, “SVM and SVM ensembles in breast cancer prediction,” PLoS One, 2017.

Y. Kara, M. Acar Boyacioglu, and Ö. K. Baykan, “Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange,” Expert Syst. Appl., 2011.

V. VAPNIK, “Pattern recognition using generalized portrait method,” Autom. Remote Control, 1963.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “Training algorithm for optimal margin classifiers,” in Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, 1992.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., 1995.

W. Li, D. Dai, M. Tan, D. Xu, and L. Van Gool, “Fast Algorithms for Linear and Kernel SVM+,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016.

D. R. Amancio et al., “A systematic comparison of supervised classifiers,” PLoS One, 2014.

C. Campbell and Y. Ying, “Learning with support vector machines,” Synth. Lect. Artif. Intell. Mach. Learn., 2011.

S. R. Upreti and S. R. Upreti, “Lagrange Multipliers,” in Optimal Control for Chemical Engineers, 2013.

“Separating Hyperplane Theorem,” in Encyclopedia of Operations Research and Management Science, 2013.

K. R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An introduction to kernel-based learning algorithms,” IEEE Transactions on Neural Networks. 2001.

C. C. Chang and C. J. Lin, “LIBSVM: A Library for support vector machines,” ACM Trans. Intell. Syst. Technol., 2011.

D. Meyer, “Support vector machines: the interface to libsvm in package e1071,” … Syst. their …, 2014.

N. K. Verma and A. Salour, “Feature extraction,” in Studies in Systems, Decision and Control, 2020.

J. Kittler, “Feature selection and extraction.,” Handb. pattern Recognit. image Process., 1986.

N. Sapankevych and R. Sankar, “Time series prediction using support vector machines: A survey,” IEEE Comput. Intell. Mag., 2009.

X. Ma, Y. Tian, C. Luo, and Y. Zhang, “Predicting Future Visitors of Restaurants Using Big Data,” Proc. - Int. Conf. Mach. Learn. Cybern., vol. 1, no. May, pp. 269–274, 2018.

D. R. S. R Manikandan, “Machine Learning Algorithms for Classification,” Int. J. Acad. Res. Dev., 2018.

D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 2018.

A. Tharwat, “Classification assessment methods,” Appl. Comput. Informatics, 2018.




DOI: http://dx.doi.org/10.26418/jp.v7i1.42964

Refbacks

  • There are currently no refbacks.