Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi
Abstract
Keywords
Full Text:
PDFReferences
A. P. Sitorus, H. Murfi, S. Nurrohmah, and A. Akbar, “Sensing Trending Topics in Twitter for Greater Jakarta Area,” vol. 7, no. 1, pp. 330–336, 2017, doi: 10.11591/ijece.v7i1.pp330-336.
N. Y. A. Faradhillah, R. P. Kusumawardani, and I. Hafidz, “Eksperimen Sistem Klasifikasi Analisa Sentimen Twitter pada Akun Resmi Pemerintah Kota Surabaya Berbasis Pembelajaran Mesin (Experiments on Sentiment Classification System for Tweets of the Official Account of the City Government of Surabaya based on Mach,” Pros. Semin. Nas. Sist. Inf. Indones. 2016, pp. 15–24, 2016.
M. D. Anggreani, E. P. Purnomo, and A. N. Kasiwi, “RUANG PUBLIK VIRTUAL SEBAGAI PINTU KOMUNIKASI GOVERNMENT TO CITIZEN (Studi Kasus: Perbandingan Media Sosial Pemerintah Kota Yogyakarta dan Surabaya),” J. MODERAT, vol. 6, no. 1, pp. 203–220, 2020.
D. Cucinotta and M. Vanelli, “WHO declares COVID-19 a pandemic,” Acta Biomed., vol. 91, no. 1, pp. 157–160, 2020, doi: 10.23750/abm.v91i1.9397.
W. Mas’udi and P. S. Winarti, Tata Kelola Penanganan COVID-19 di Indonesia: Kajian Awal. Jogjakarta: Gadjah Mada University Press Dilarang, 2020.
A. M. Pudjajana and D. Manongga, “SENTIMEN ANALISIS TWEET PORNOGRAFI KAUM HOMOSEKSUAL INDONESIA DI TWITTER DENGAN NAIVE BAYES,” vol. 9, no. 1, pp. 313–318, 2018.
M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no. 5, pp. 25–29, 2017, doi: 10.5120/ijca2017915758.
K. M. Alomari, H. M. Elsherif, and K. Shaalan, “Arabic Tweets Sentimental Analysis Using Machine Learning,” vol. 1, no. June, pp. 602–610, 2017, doi: 10.1007/978-3-319-60042-0.
M. Soleymani, D. Garcia, B. Jou, B. Schuller, S. F. Chang, and M. Pantic, “A survey of multimodal sentiment analysis,” Image Vis. Comput., vol. 65, pp. 3–14, 2017, doi: 10.1016/j.imavis.2017.08.003.
U. Rofiqoh, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexion Based Feature,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 12, pp. 1725–1732, 2017.
M. Allahyari, S. Pouriyeh, M. Assefi, S. Safei, E. D. Trippe, J. B. Gutierrez, K. Kochut, “A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques,” 2017.
P. H. Saputro, M. Aristin, and Dy. L. Tyas, “Klasifikasi Lagu Daerah Indonesia Berdasarkan Lirik Menggunakan Metode TF-IDF dan Naive Bayes,” J. Teknoloi Inform. dan Terap., vol. 4, no. 1, pp. 45–50, 2017.
Z. Zhu, J. Liang, D. Li, H. Yu, and G. Liu, “Hot Topic Detection Based on a Refined TF-IDF Algorithm,” IEEE Access, vol. 7, pp. 26996–27007, 2019, doi: 10.1109/ACCESS.2019.2893980.
S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Keputusan Calon Nasabah Potensial Berbasis Particle Swarm Optimization,” Optimasi Prediksi Keputusan Calon Nasabah Potensial Berbas. Part. Swa, vol. 6, no. 2, pp. 286–292, 2019.
M. Sadikin and F. Alfiandi, “Comparative Study of Classification Method on Customer Candidate Data to Predict its Potential Risk,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, p. 4763, 2018, doi: 10.11591/ijece.v8i6.pp4763-4771.
D. Suyanto, Data Mining Untuk Klasifikasi dan Klasterisasi Data, Edisi Revi. Bandung: Penerbit Informatika, 2019.
L. Jiang, S. Wang, C. Li, and L. Zhang, “Structure extended multinomial naive Bayes,” Inf. Sci. (Ny)., vol. 329, pp. 346–356, 2016, doi: 10.1016/j.ins.2015.09.037.
C. Coşkun, Y. Doç, and A. Baykal, “Comparison of classification algorithms in data mining on an example,” vol. 116, no. 22, pp. 51–58, 2011.
DOI: http://dx.doi.org/10.26418/jp.v7i1.41728
Refbacks
- There are currently no refbacks.