Tinjauan Kasus Model Speech Recognition: Hidden Markov Model

Deny Jollyta, Dwi Oktarina, Johan Johan

Abstract


Teknologi pengenal suara (speech recognition) merupakan teknologi yang berkembang pesat dalam bidang kecerdasan buatan (artificial intelligent). Saat ini, teknologi pengenal suara menjadi hal yang komersil melalui berbagai media teknologi seperti smartphone dan komputer. Salah satu pembentuk struktur pengenal suara agar dapat bekerja pada perangkat tersebut adalah model statistik pengenal suara Hidden Markov Model (HMM). Penerapan HMM pada berbagai kasus menunjukkan bahwa model ini cocok dengan berbagai macam data. Tulisan ini merupakan sebuah tinjauan untuk model HMM yang bertujuan untuk memberikan gambaran dan pemahaman terhadap kinerja HMM melalui rangkuman sejumlah penelitian yang digunakan dalam berbagai data. Penerapan HMM tersebut menunjukkan optimalisasi kinerja HMM dan tinjauan terhadap sejumlah penelitian menunjukkan bahwa tingkat keberhasilan HMM dalam mengenali data mencapai 71.43%.


Keywords


Speech recognition; artificial intelligent; model statistik; hidden markov model; media teknologi

Full Text:

PDF

References


C. Vimala, “A Review on Speech Recognition Challenges and Approaches,” World Comput. Sci. Inf. Technol. J., vol. 2, no. 1, pp. 1–7, 2012.

A. S. Sunny, “Speech Recognition Menggunakan Algoritma Program Dinamis,” Speech Recognition menggunakan Algoritma Program Dinamis, p. 4, 2009.

C. P. Dalmiya, V. S. Dharun, and K. P. Rajesh, “An efficient method for Tamil speech recognition using MFCC and DTW for mobile applications,” in 2013 IEEE Conference on Information and Communication Technologies, 2013, no. Ict, pp. 1263–1268, doi: 10.1109/CICT.2013.6558295.

G. Muhammad, Y. A. Alotaibi, and M. N. Huda, “Automatic speech recognition for Bangla digits,” in ICCIT 2009 - Proceedings of 2009 12th International Conference on Computer and Information Technology, 2009, no. Iccit, pp. 379–383, doi: 10.1109/ICCIT.2009.5407267.

P. Bhardwaj and S. Debbarma, “A Study of Methods Involved In Voice Emotion Recognition,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 3, no. 2, pp. 5517–5521, 2014.

A. Trivedi, N. Pant, P. Shah, S. Sonik, and S. Agrawal, “Speech to text and text to speech recognition systems-Areview,” IOSR J. Comput. Eng., vol. 20, no. 2, pp. 36–43, 2018, doi: 10.9790/0661-2002013643.

E. I. Yuwono and T. Antonio, “Studi Format Audio dan Teks Untuk Modul Speech to Text,” JISI, vol. 1, no. 1, pp. 1–10, 2015.

X. Yuan et al., “CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition,” in Proceedings of the 27th USENIX Security Symposium, 2018, pp. 1–17.

M. K. Titsias, C. C. Holmes, and C. Yau, “Statistical Inference in Hidden Markov Models Using k-Segment Constraints,” J. Am. Stat. Assoc., vol. 111, no. 513, pp. 200–215, 2016, doi: 10.1080/01621459.2014.998762.

F. De Wet, N. Kleynhans, D. Van Compernolle, and R. Sahraeian, “Speech recognition for under-resourced languages: Data sharing in hidden Markov model systems,” S. Afr. J. Sci., vol. 113, no. 1–2, pp. 1–9, 2017, doi: 10.17159/sajs.2017/20160038.

N. W. Pratiwi, F. Fauziah, S. Andryana, and A. Gunaryati, “Deteksi Wajah Menggunakan Hidden Markov Model (HMM) Berbasis Matlab,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 3, no. 1, pp. 44–49, 2018, doi: 10.30998/string.v3i1.2538.

A. Y. Vadwala, K. A. Suthar, Y. A. Karmakar, and N. Pandya, “Survey paper on Different Speech Recognition Algorithm: Challenges and Techniques,” Int. J. Comput. Appl., vol. 175, no. 1, pp. 31–36, 2017, doi: 10.5120/ijca2017915472.

Y. Lucas et al., “Multiple perspectives HMM-based feature engineering for credit card fraud detection,” in Proceedings of the ACM Symposium on Applied Computing, 2019, vol. April, pp. 1359–1361, doi: 10.1145/3297280.3297586.

A. T. Bon and N. Isah, “Hidden Markov Model and Forward-Backward Algorithm in Crude Oil Price Forecasting,” in IOP Conference Series: Materials Science and Engineering, 2016, vol. 160, no. 1, pp. 1–6, doi: 10.1088/1757-899X/160/1/012067.

S. W. Mamonto, Y. A. R. Langi, and A. J. Rindengan, “Penerapan Hidden Markov Model Pada Harga Saham,” JdC, vol. 5, no. 1, pp. 35–41, 2016.

K. Audhkhasi, O. Osoba, and B. Kosko, “Noisy hidden Markov models for speech recognition,” in Proceedings of the International Joint Conference on Neural Networks, 2013, no. 2, pp. 2738–2743, doi: 10.1109/IJCNN.2013.6707088.

S. Febriani, Harianto, and I. Puspasari, “ANALISIS THRESHOLD MENGGUNAKAN METODE HIDDEN MARKOV MODEL,” J. Control Netw. Syst., vol. 6, no. 2, pp. 197–206, 2017.

Z. Ghahramani, “An Introduction to Hidden Markov Models and Bayesian Networks,” J. Pattern Recognit. Artif. Intell., vol. 15, no. 1, pp. 9–42, 2001.

J. M. T. S., D. Puspitaningrum, and B. Susilo, “Penerapan Speech Recognition Pada Permainan Teka-Teki Silang Menggunakan Metode Hidden Markov Model (HMM) Berbasis Desktop,” J. Rekrusif, vol. 4, no. 1, pp. 119–129, 2016.

K. S. Saksamudre, P. P. Shrishrimal, and R. R. Deshmukh, “A Review on Different Approaches for Speech Recognition System,” Int. J. Comput. Appl., vol. 115, no. 22, pp. 23–28, 2015, doi: 10.5120/20284-2839.

M. Gales and S. Young, “The application of hidden Markov Models in speech recognition,” Found. Trends Signal Process., vol. 1, no. 3, pp. 195–304, 2007, doi: 10.1561/2000000004.

M. A. Menacer, O. Mella, D. Fohr, D. Jouvet, D. Langlois, and K. Smaili, “An enhanced automatic speech recognition system for Arabic,” in Proceedings ofThe Third Arabic Natural Language Processing Workshop (WANLP), 2017, pp. 157–165, doi: 10.18653/v1/w17-1319.

A. H. Koosasi, R. Sarno, and A. Munif, “Deteksi Fraud Menggunakan Metode Model Markov Tersembunyi Pada Proses Bisnis,” J. Tek. ITS, vol. 6, no. 1, pp. 24–28, 2017, doi: 10.12962/j23373539.v6i1.22328.

N. Nguyen, “An Analysis and Implementation of the Hidden Markov Model to Technology Stock Prediction,” Risks, vol. 5, no. 62, pp. 1–16, 2017, doi: 10.3390/risks5040062.

J. Lemos, S. Patil, S. Save, and H. Pise, “Credit card fraud detection using Hidden Markov Model and Naive Bayes,” IOSR J. Comput. Eng., vol. 21, no. 2, pp. 72–76, 2019, doi: 10.1109/TDSC.2007.70228.

S. Bhende, K. Thakur, J. Teseng, M. L. Ali, and N. Wang, “Character recognition using hidden markov models,” Int. J. Recent Technol. Eng., vol. 7, no. 4S2, pp. 105–110, 2018.

R. Alghamdi, “Hidden Markov Models (HMMs) and Security Applications,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 2, pp. 39–47, 2016, doi: 10.14569/ijacsa.2016.070205.

D. Abdullah and R. Ramadhan, “Implementasi Algoritma Hidden Markov Model Sebagai Pengenalan,” J. Pseudocode, vol. III, no. 1, pp. 15–25, 2016.

A. Anisa, A. K. Jaya, and S. Sunarti, “Analisis Hidden Markov Model untuk Segmentasi Barisan DNA,” J. Mat. Stat. dan Komputasi, vol. 13, no. 1, pp. 55–65, 2016, doi: 10.20956/JMSK.V13I1.3484.

Q. Nada, C. Ridhuandi, P. Santoso, and D. Apriyanto, “Speech Recognition dengan Hidden Markov Model untuk Pengenalan dan Pelafalan Huruf Hijaiyah,” J. Al-Azhar Indones. Seri Sains dan Teknol., vol. 5, no. 1, pp. 19–26, 2019.

E. F. Yuwitaning, B. Hidayat, and N. Andini, “Implementasi Metode Hidden Markov Model untuk Deteksi Tulisan Tangan,” e-Proceeding Eng., vol. 1, no. 1, pp. 396–402, 2014.

Y. Rosmansyah and R. R. A. Wicaksana, “Perancangan Aplikasi Multimedia Dengan Menggunakan Hidden Markov Model Untuk Menentukan Gaya Belajar,” J. Sosioteknologi, vol. 17, no. 2, pp. 305–315, 2018, doi: 10.5614/sostek.itbj.2018.17.2.12.

B. H. Prasetio, W. Kurniawan, and M. H. H. Ichsan, “Pengenalan Emosi Berdasarkan Suara Menggunakan Algoritma HMM,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, pp. 168–172, 2017, doi: 10.25126/jtiik.201743339.

B. Cong Giao, T. Hoai An, N. Thi Hong Anh, and H. Nhut Minh, “Hidden Markov Model for recognition of skeletal databased hand movement gestures,” EAI Endorsed Trans. Context. Syst. Appl., vol. 4, no. 14, pp. 1–10, 2018, doi: 10.4108/eai.18-6-2018.154819.

S. M. Mon and H. M. Tun, “Speech-To-Text Conversion ( STT ) System Using Hidden Markov Model ( HMM ),” Int. J. Sci. Technol. Res., vol. 4, no. 6, pp. 349–352, 2015.

D. Abdullah and C. I. Erliana, “Aplikasi Pengenalan Ucapan Huruf Jepang Menggunakan Hidden Markov Model (HMM),” J. Inf. Syst. Informatics Comput., vol. 1, no. 1, pp. 21–32, 2017, doi: 10.3975/cagsb.2017.02.15.

A. Jamaludin, A. F. Huda, and R. Sahyandari, “Pengenalan Lafal Hukum Nun Mati Menggunakan Hidden Markov Model,” Log!K@, vol. 6, no. 1, pp. 1–10, 2016.

L. R. Rabiner, “Tutorial on Hmm and Applications.Pdf,” in Proceedings of the IEEE, 1989, vol. 77, pp. 257–286, doi: 10.1109/5.18626.




DOI: http://dx.doi.org/10.26418/jp.v6i2.39231

Refbacks

  • There are currently no refbacks.