Solusi Prediksi Persediaan Barang dengan Menggunakan Algoritma Apriori (Studi Kasus: Regional Part Depo Auto 2000 Palembang)

Usman Ependi, Ade Putra

Abstract


Dalam memprediksi persediaan barang banyak metode yang dapat dilakukan antara lain yaitu dengan melakukan pengolahan data penjualan menggunakan metode Data Mining yang disertai dengan algoritma apriori didasarkan pada proses pembelian yang dilakukan oleh konsumen berdasarkan keterkaitan antar produk yang dibeli. Dengan menggunakan algoritma apriori pihak perusahaan dalam hal ini adalah Regional Part Depo Auto 2000 Palembang dapat menyediakan spare part yang dibutuhkan oleh konsumen khususnya dilingkungan Sumatera Selatan tanpa harus melakukan proses indent hal ini dikarenakan banyaknya jumlah spare part yang harus di sediakan oleh PT. Depo Toyota guna melayani kebutuhan konsumen di lingkungan Sumatera Selatan. Adapun tahapan data mining yang di gunakan yaitu Knowledge Discovery in Database (KDD) yang terdiri dari proses data cleaning and integration, data selection and integration, data mining, evaluation and prentation. Dari proses diatas didapat pola keterkaitan spare part sebanyak 646 dari jumlah spare part sebanyak 338.


Keywords


Data Mining; Apriori; Spare Part; KDD

Full Text:

PDF

References


P. Mandrave, M. Mane, and S. Patil, “Data Mining Using Association Rule Based on Apriori Algorithm and Improved Approach with Illustration,” International Journal of Latest Trends in Engineering and Technology (IJLTET), vol. 3, no. 2, pp. 107–113, Nov. 2013.

C. Christy, M. Maria Parimala, and M. Prema, “The Review on Data Mining Techniques and its Applications,” International Journal of Data Mining Techniques and Applications (IJDMTA), vol. 07, no. 01, pp. 50–54, Jun. 2018.

P. C and A. Selvados, Thanamani, “An Overview of Knowledge Discovery Database and Data Mining Techniques,” Proceedings of International Conference on Global Innovations In Computing Technology (ICGICT’14), vol. 2, no. Special Issue 1, pp. 1571–1578, Mar. 2014.

A. Kumar and I. Chatterjee, “Knowledge Discovery – Techniques and Application,” (IJCSIT) International Journal of Computer Science and Information Technologies, vol. 7, p. 2, 2016.

Y. Ramamohan, K. Vasantharao, C. Kalyana Chakravarti, and A. S. K. Ratnam, “A Study of Data Mining Tools in Knowledge Discovery Process,” International Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 3, pp. 191–194, Jul. 2012.

A. Azevedo and M. Filipe Santos, “KDD, SEMMA AND CRISP-DM: A PARALLEL OVERVIEW,” IADIS European Conference Data Mining 2008, vol. 8, pp. 182–185, Jul. 2008.

U. Shafique and H. Qaiser, “A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA),” International Journal of Innovation and Scientific Research (IJISR), vol. 12, no. 1, pp. 217–222, Nov. 2014.

H. J. G. Palacios, R. A. J. Toledo, G. A. H. Pantoja, and Á. A. M. Navarro, “A comparative between CRISP-DM and SEMMA through the construction of a MODIS repository for studies of land use and cover change,” Advances in Science, Technology and Engineering Systems Journal, vol. 2, no. 3, pp. 598–604, Jun. 2017.

K.-P. Mehdi D. B. A., Encyclopedia of Information Science and Technology, Fourth Edition. IGI Global, 2017.

“Data mining,” Wikipedia. 27-Jun-2019.

“SEMMA,” Wikipedia. 09-Feb-2019.

“Cross-industry standard process for data mining,” Wikipedia. 15-Apr-2019.

A. Sahu, M. Dhakar, and P. Rani, “Comparative Analysis of Apriori Algorithm based on Association Rule,” International Journal of Computer Science & Communication (IJCSC), vol. 6, no. 2, p. PP. 18-21, Sep. 2015.

E. Srikanti, R. Fitri Yansi, Norhavina, I. Permana, and F. Nur Salisah, “PENERAPAN ALGORITMA APRIORI UNTUK MENCARI ATURAN ASOSIASI PADA DATA PEMINJAMAN BUKU DI PERPUSTAKAAN,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 4, p. pp 77-80, Feb. 2018.

Aris Wijayanti, “Analisis Hasil Implementasi Data Mining Menggunakan Algoritma Apriori pada Apotek,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 3, p. pp 60-64, 2017.

A. Fikri, “Implementasi Algoritma Apriori Dalam Menentukan Program Studi Yang Diambil Mahasiswa,” Jurnal Ipteks Terapan, vol. 10.i2, pp. 81–85.

H. Xiaoling, X. Yangbing, S. Zhang, and W. Zhang, “Association Rule Mining for Selecting Proper Students to Take Part in Proper Discipline Competition: A Case Study of Zhejiang University of Finance and Economics,” International Journal of Emerging Technologies in Learning (iJET), Mar. 2018.

U. Brajawidagda, “Data Mining untuk Estimasi Biaya Produksi pada Industri Kecil dengan Sistem Produksi Job order,” p. 6.

Y. Gao Xin, “The research of improved Apriori mining algorithm in bank customer segmentation,” Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), vol. 1 of 4, pp. pp3174-3177, Mar. 2013.

Ruswati, A. Irham Gufrom, and Rianto, “Associative Analysis Data Mining Pattern Against Traffic Accidents Using Apriori Algorithm,” Scientific Journal of Informatics (SJI), vol. 5, pp. 91–104, Nov. 2018.

J. Xi, Z. Zhao, W. Li, and Q. Wang, “A Traffic Accident Causation Analysis Method Based on AHP- Apriori,” Procedia Engineering, p. pp 680 – 687, 2016.

B. M. Patil, R. C. Joshi, and D. Toshiniwal, “Association rule for classification of type -2 diabetic patients,” 2010 Second International Conference on Machine Learning and Computing, p. pp 330-334, Feb. 2010.

L. Desafitri RB, “Pengaruh Service Failure Severity Terhadap Kepuasan, Kepercayaan, Komitmen Dan Negatif Word Of Mouth,” Jurnal Manajemen dan Pemasaran Jasa, vol. 3, p. pp 53-76, 2010.

T. L. Seifert, “Understanding student motivation,” Educational Research, vol. 46, p. pp 137-149, 2004.

H. Jiawei, M. Kamber, and J. Pei, Data Mining " Consepts and Technique. Morgan KaufmannPublishers, 2012.

Mewar University and N. Rikhi, “Data Mining and Knowledge Discovery in Database,” International Journal of Engineering Trends and Technology, vol. 23, no. 2, pp. 64–70, May 2015.

K. Ahmed and T. Jesmin, “Comparative Analysis of Data Mining Classification Algorithms in Type-2 Diabetes Prediction Data Using WEKA Approach,” International Journal of Science and Engineering, vol. 7, no. 2, Oct. 2014.

P. Prithiviraj and R. Porkodi, “A Comparative Analysis of Association Rule Mining Algorithms in Data Mining: A Study,” p. 22.

L. Daniel T and L. Chantal D, Discovering Knowledge in Data: An Introduction to Data Mining, 2nd Edition. John Willey & Sons.Inc, 2005.

A. J Doshi and B. Joshi, “Comparative analysis of Apriori and Apriori with hashing algorithm,” International Research Journal of Engineering and Technology (IRJET), vol. 5, no. 1, p. pp 976-979, Jan. 2010.

D. Sulistiyo Kusumo, Moch. Arief Bijaksana, and D. Dharmantoro, “Data Mining Dengan Algoritma Apriori Pada Rdbms Oracle,” urnal Penelitian dan Pengembangan TELEKOMUNIKASI, vol. 8, no. pp 1-5.




DOI: http://dx.doi.org/10.26418/jp.v5i2.32648

Refbacks



Oktrik
Creative Commons License
This work is licensed under aCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
View My Stats