PERAMALAN CURAH HUJAN DI KOTA PONTIANAK MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE NEURAL NETWORK (VAR-NN)

Ridha Istighfarani, Shantika Martha, Wirda Andani

Abstract


Fenomena cuaca ekstrim di Indonesia cenderung meningkat akibat dampak perubahan iklim. Perubahan iklim mengakibatkan perubahan cuaca, sehingga diperlukan cara untuk meramalkan agar mempermudah masyarakat untuk mengetahui informasi tentang terjadi atau tidaknya hujan. Penelitian ini menggunakan metode Vector Autoregressive Neural Network (VAR-NN) yang bertujuan meramalkan curah hujan di Kota Pontianak berdasarkan data bulanan dari Januari 2019 hingga Desember 2022 yang diperoleh dari Stasiun Meteorologi Maritim Pontianak. Vector Autoregressive (VAR) adalah metode deret waktu multivariat yang variabelnya tidak perlu dipisahkan menjadi variabel endogen atau eksogen. Dalam kasus curah hujan biasanya juga mengandung pola nonlinier, sehingga diperlukan pemodelan nonlinier untuk mengantisipasi masalah tersebut. Adapun metode peramalan yang bersifat nonlinier salah satunya adalah Neural Network (NN). NN memiliki kemampuan dalam menganalisis berbagai jenis data. Hasil analisis menunjukkan bahwa VAR-NN (5) dengan jumlah lapisan (4-2-1) menghasilkan peramalan curah hujan selama 12 bulan ke depan termasuk dalam kategori rendah. Berdasarkan perhitungan MAPE bahwa hasil peramalan termasuk dalam kategori cukup baik dengan nilai MAPE sebesar 45,080%. Hal ini disebabkan karena nilai varians dari curah hujan yang besar, sehingga nilai MAPE yang dihasilkan besar pula.

 

Kata Kunci: curah hujan, VAR, NN.


Full Text:

PDF


DOI: http://dx.doi.org/10.26418/bbimst.v13i3.77470

Refbacks

  • There are currently no refbacks.