ANALISIS DAN SIMULASI MODEL MATEMATIKA PENYAKIT DEMAM DENGUE DENGAN SATU SEROTIF VIRUS DENGUE

Hendri Purwanto, Evi Noviani, Muhlasah Novitasari Mara

Abstract


Demam dengue merupakan penyakit endemik yang ditularkan melalui vektor nyamuk Aedes aegypti. Penyakit ini terdapat di lebih dari 100 negara di Amerika, Afrika, maupun Asia, khususnya negara-negara yang beriklim tropis. Persamaan diferensial dapat digunakan untuk merepresentasikan penyebaran virus dengue yang terjadi dalam selang waktu dan dimodelkan dalam bentuk model matematika. Model matematika dalam penelitian ini mencoba merepresentasikan tentang penyebaran demam dengue berdasarkan data yang diperoleh dan asumsi yang digunakan. Model matematika yang digunakan adalah model matematika yang diperoleh dari penelitian Syafruddin dan Noorani (2012) yang terdiri dari subpopulasi Susceptible (S), Exposed (E), Infected (I), dan Recovered (R). Model matematika SEIR selanjutnya dianalisis untuk melihat perilaku solusi dari sistem. Analisis kestabilan dari sistem dalam penelitian ini adalah stabil asimtotik yang menunjukkan adanya kasus endemik dan tidak stabil yang menunjukkan kasus nonendemik. Simulasi model matematika SEIR menunjukkan bahwa memerlukan waktu yang sangat lama untuk memastikan manusia yang terinfeksi memiliki terbebas dari infeksi virus dengue. Hal ini terjadi karena infeksi virus dengue yang terjadi secara terus-menerus antara populasi manusia dan nyamuk.

 

Kata kunci: demam dengue, endemik, model SEIR, kestabilan, simulasi model.


Full Text:

PDF


DOI: http://dx.doi.org/10.26418/bbimst.v3i03.7349

Refbacks

  • There are currently no refbacks.