PENERAPAN MODEL NEURO-GARCH PADA PERAMALAN DATA RETURN SAHAM
Abstract
Heteroskedastisitas merupakan masalah yang sering terjadi dalam proses peramalan pada data keuangan. Model generalized autoregressive conditional heteroscedasticity (GARCH) merupakan model runtun waktu yang dapat digunakan untuk data yang mengalami heteroskedastisitas. Model lain yang dapat digunakan untuk memodelkan data dengan fluktuasi yang sangat besar dan tidak tetap adalah jaringan saraf tiruan (JST). Dalam penelitian ini kedua model digabungkan menjadi sebuah model yang disebut Neuro-GARCH. Tujuan penelitian ini membentuk arsitektur jaringan model terbaik dan membandingkan hasil peramalan dengan data aktual return saham pada tanggal 11 Juli 2018 sampai dengan 28 Februari 2019. Data yang digunakan adalah data return saham PT Bank Central Asia Tbk penutupan harian pada periode Januari 2017 sampai dengan Februari 2019. Adapun langkah-langkah dalam penelitian ini diawali dengan pembentukan model box jenkins. Residual model box jenkins terbaik digunakan untuk mendeteksi heteroskedastisitas menggunakan uji lagrange multiplier (ARCH-LM). Data residual yang memiliki heteroskedastisitas dimodelkan ke dalam model GARCH. Variabel bebas pada model GARCH kemudian dijadikan input pada model JST dan targetnya adalah data return (aktual). Hasil analisis menunjukkan bahwa bentuk jaringan terbaik adalah (2-5-1) dengan nilai MSE pengujian sebesar 0,00014955. Hasil peramalan selama 167 hari mengalami fluktuasi, dengan return tertinggi yaitu pada tanggal 14 September 2018 sebesar 0,0128467 dan terendah terjadi pada tanggal 13 Juli 2018 sebesar -0,0049574.
Kata Kunci: ARIMA, heteroskedastisitas, JST, backpropagation
Full Text:
PDFDOI: http://dx.doi.org/10.26418/bbimst.v9i2.39911
Refbacks
- There are currently no refbacks.