ESTIMASI PARAMETER MODEL SURVIVAL DISTRIBUSI EKSPONENSIAL DATA TERSENSOR DENGAN METODE BAYESIAN GELF MENGGUNAKAN PRIOR INFORMATIF DAN NON-INFORMATIF

Surati, Helmi, Setyo Wira Rizki

Abstract


Data survival adalah data yang menunjukkan waktu suatu individu atau objek dapat bertahan hidup hingga terjadinya suatu kegagalan atau kejadian tertentu. Data dikatakan tersensor apabila data tidak dapat diamati secara lengkap karena objek penelitian hilang atau mengundurkan diri atau sampai akhir penelitian objek tersebut belum mengalami kejadian tertentu. Tujuan pada penelitian ini adalah menentukan estimasi parameter model survival distribusi Eksponensial pada data tersensor dengan metode Bayesian GELF menggunakan prior Gamma sebagai prior informatif dan prior Jeffreys sebagai prior non-informatif dan menerapkan pada kasus penderita kanker paru-paru. Setelah diperoleh estimator dari kedua prior, selanjutnya diterapkan pada data pasien penderita kanker paru-paru berdistribusi Eksponensial  yang diambil dari program R versi 3.3.0 untuk mengetahui peluang individu dapat bertahan hidup. Nilai MSE yang diperoleh untuk fungsi survival dan fungsi hazard untuk prior Gamma ialah 0.000135766 dan 1.2999E-07, sedangkan fungsi survival dan fungsi hazard untuk prior Jeffreys ialah 0.000186044 dan 1.76866E-07. Berdasarkan nilai MSE dari estimator pada penelitian ini, diperoleh metode Bayesian GELF prior Gamma lebih baik dari pada metode Bayesian GELF prior Jeffreys. Salah satu contoh hasil dari olah data metode Bayesian GELF prior Gamma, diperoleh peluang hidup pasien pada kasus ini yang mengidap penyakit kanker paru-paru selama 1 hari adalah 0.992169551, selama 80 hari adalah 0.5331772256, selama 250 hari adalah 0.14011148, selama 587 hari adalah 0.009906501, dan selama 999 hari adalah 0.000388427.

 

Kata Kunci: Distribusi Eksponensial, Metode Bayesian GELF, Prior Gamma, Prior Jeffreys, Survival.


Full Text:

PDF


DOI: http://dx.doi.org/10.26418/bbimst.v7i2.24832

Refbacks

  • There are currently no refbacks.