ALGORITMA k-NEAREST NEIGHBOR DALAM KLASIFIKASI DATA HASIL PRODUKSI KELAPA SAWIT PADA PT. MINAMAS KECAMATAN PARINDU

Nobertus Krisandi, Helmi, Bayu Prihandono.

Abstract


Di dalam Industri kelapa sawit terdapat sekumpulan informasi yang dapat digali dan dikembangkan demi kemajuan industri tersebut dengan menggunakan metode Data Mining. Data mining dikelompokkan dalam dua kategori, yakni supervised dan unsupervised. Algoritma k-Nearest Neighbor (k-NN) adalah suatu metode yang menggunakan algoritma supervised, dimana hasil dari sampel uji yang baru diklasifikasikan berdasarkan mayoritas dari kategori pada k-NN. Penelitian ini dilakukan untuk mengkaji tentang Algoritma k-NN dan kemudian mengaplikasikan Algoritma k-NN dalam klasifikasi data. Data yang digunakan adalah data hasil produksi kelapa sawit (Tonase) dari 50 kelompok tani pada periode Juli-Desember 2011 pada PT. MINAMAS Kabupaten Sanggau. Nilai k yang digunakan adalah k=1, k=3, k=5 dan k=7. Berdasarkan hasil penelitian data terklasifikasi dalam 6 cluster berdasarkan kemiripan hasil produksi dari 50 kelompok tani yang ada di KUD. HIMADO. Hasil produksi yang dominan adalah produksi dari kelompok tani kelapa sawit yang terletak pada C1 dengan 17 anggota dengan persentase 34% yaitu kelompok 1, 2, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,50 untuk nilai k=7.

Kata Kunci : Data mining, Supervised, Algoritma k-Nearest Neighbor.


Full Text:

PDF


DOI: http://dx.doi.org/10.26418/bbimst.v2i1.1540

Refbacks

  • There are currently no refbacks.