EFFECT OF LEARNING MODEL APPLICATION OF GUIDED LABORATORY INQUIRY TO LOGICAL THINKING ABILITY OF STUDENTS ON HEAT TO ELECTRICITY CONVERSION MATERIAL
Abstract
This reseach aims to determine the application effect of guided inquiry laboratory model on students’ logical thinking ability on the material of heat to electricity conversion. The population in this reseach were all students of class XII MIA at SMA Negeri 15 Bandarlampung for the 2019/2020 academic year. The technique used is purposive sampling, so that the sample in class XII MIA 1 is obtained in the form of a one group pretest-posttest design. The process of collecting data using interview techniques as a preliminary study and through pretest-posttest. The test question used is the Logical Thinking Test which measures five indicator’s of logical thinking. Hypothesis testing is done by using Paired Sample T-Test. The results of the analysis showed that the average difference between the posttest and pretest scores was 30.80 for all indicators. Data analysis also obtained an average n-gain of 0.55 which is included in the medium category. The n-gain test was also carried out on each indicator and was in the medium category. The variable controlling indicator shows n-gain of 0.65; probabilistic reasoning of 0.66; correlational reasoning of 0.62; proportional reasoning of 0.51; and combinatorial 0,36. Based on the entire analysis test, the results of the reseach showed that there was a significant effect of applying the guided inquiry laboratory model on the students’ logical thinking ability on the material of heat to electricity conversion.
Keywords
Full Text:
PDFReferences
Ateş, Ö., & Eryilmaz, A. (2011). Effectiveness of hands-on and minds-on activities on students’ achievement and attitudes towards physics. Asia-Pacific Forum on Science Learning and Teaching, 12(1), 1-22.
Azwar, S. (1997). Reliabilitas dan validitas. Yogyakarta: Pustaka Pelajar.
Baloyi, V. M. (2017). Influence of Guided Inquiry-Based Laboratory Activities on Outcomes Achieved in First-Year Physics. Pretoria: Faculty of Education.
Bilgin, I. (2009). The Effects of Guided Inquiry Instruction Incorporating a Cooperative Learning Approach on University Student Achievement of Acid and Bases Concepts and Attitude Toward Guided Inquiry Instruction. Scientific Research and Essays, 4(10), 1038–1046.
Cohen, E. G. (1994). Restructuring the Classroom: Conditions for Productive Small Groups. Review of Educational Research, 64(1), 1–35.
Davidson, N., & Major, C. H. (2014). Boundary Crossings: Cooperative Learning, Collaborative Learning, and Problem-Based Learning. Journal on Excellence in College Teaching, 25(3&4), 7–55.
Diana, N. (2018). Mengembangkan Kemampuan Berpikir Kreatif dan Berpikir Logis Mahasiswa dengan Adversity Quotient dalam Pemecahan Masalah. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika II, pp. 101–112.
Djafar, Z., Putra, N., & Koestoer, R. A. (2011). Pengaruh Variasi Temperatur Fluida Panas terhadap Karakteristik Modul Termoelektrik Generator. Jurnal Teknik Mesin, 11 (1): 32-41.
Folmer, V., Barbosa, N. B. D. V., & Soares, F. a. (2009). Experimental activities based on ill-structured problems improve Brazilian school students ’ understanding of the nature of scientific knowledge. Revista Electrónica de Enseñanza de Las Ciencias, 8(1), 232–254.
Gultepe, N., & Kilic, Z. (2015). Effect of Scientific Argumentation on the Development of Scientific Process Skills in the Context of Teaching Chemistry. International Journal of Environmental and Science Education, 10(1), 111–132.
Haury, D. L., & Rillero, P. (1994). Perspectives of Hands-On Science Teaching. Columbus: The Ohio State University.
Kartono. (2010). Hands On Activity pada Pembelajaran Geometri Sekolah sebagai Asesmen Kinerja Siswa. Jurnal Matematika Kreatif-Inovatif, 1(1), 21–32
Ketpichainarong, W., Panijpan, B., & Ruenwongsa, P. (2010). Enhanced Learning of Biotechnology Students by an Inquiry-Based Cellulase Lab. International Journal of Environmental and Science, 5(2), 169–187.
Koray, Ö., & Köksal, M. S. (2009). The Effect of Creative and Critical Thinking Based Laboratory Applications on Creative and Logical Thinking Abilities of Prospective Teachers. Asia-Pacific Forum on Science Learning and Teaching, 10(1), 1–13.
Lestari, H., Usman, M., & Hasmawati, H. (2019). Kemampuan Berpikir Logis dan Penguasaan Kosa kata Bahasa Jerman. Eralingua: Jurnal Pendidikan Bahasa Asing Dan Sastra, 3(2), 123–128.
Maretasari, E., & Subali, B. (2012). Penerapan Model Pembelajaran Inkuiri Terbimbing Berbasis Laboratorium Untuk Meningkatkan Hasil Belajar dan Sikap Ilmiah Siswa. Unnes Physics Education Journal, 1(2), 27-31.
Oliva, J. M. (2003). The Structural Coherence of Students ’ Conceptions in Mechanics and Conceptual Change. International Journal of Science Education, 25(5), 539-561.
Purwanto, A. (2012). Kemampuan Berpikir Logis Siswa Sma Negeri 8 Kota Bengkulu Dengan Menerapkan Model Inkuiri Terbimbing Dalam Pembelajaran Fisika. Exacta, 10(2), 133–135.
Prince, M. J., & Felder, R. M. (2006). Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases. Journal of Engineering Education, 95(2), 123–138.
Prince, M. J., & Felder, R. M. (2007). The Many Faces of Inductive Teaching and Learning. Journal of College S. Teaching, 36(5), 14–20.
Riffat, S. B., & Ma, X. (2003). Thermoelectrics: A review of present and potential applications. Applied Thermal Engineering, 23(8), 913–935.
Rusman. (2017). Belajar dan Pembelajaran. Jakarta: Kencana.
Rustaman, N., Dirjosoemarto, S., Yudianto, S. A., Achmad, Y., Subekti, R, Rochintaniawati, D., & Nurani, M. (2005). Strategi Belajar Mengajar Biologi. Bandung: UPI Press.
Ryanuargo, Anwar, S., & Sari, S. P. (2014). Generator Mini dengan Prinsip Termoelektrik dari Uap Panas Kondensor pada Sistem Pendingin. Jurnal Rekayasa Elektrika, 10(4), 180–185.
Saragih, S. (2004). Menumbuhkembangkan Berpikir Logis dan Sikap Positif terhadap Matematika melalui Pendekatan Matematika Realistik. Jurnal Pendidikan dan Kebudayaan Departemen Pendidikan Nasional. Badan Penelitian dan Pengembangan, 1589, 551-565.
Setiono, I., & Tadeus, D. Y. (2018). Hubungan antara Mata Kuliah Fisika Terapan dalam Kontribusinya terhadap Mata Kuliah Keahlian pada Mahasiswa Program Diploma III Teknik Elektro Sekolah Vokasi Universitas Diponegoro. Gema Teknologi, 20 (1): 6-9.
Sundari, T., Pursitasari, I. D., & Heliawati, L. (2017). Pembelajaran Inkuiri Terbimbing Berbasis Praktikum pada Topik Laju Reaksi. JPPS, 6(2), 1340-1347.
Suyanti, R. D. (2010). Strategi Pembelajaran Kimia. Yogyakarta: Graha Ilmu.
Tobin, K. G. & Capie, W. (1981). The Development and Validation of A Group Test of Logical Thinking. Educational and Psychological Measurement, 41: 413-423.
Trifone, J. D. (2011). Logcal Tin Applications for Teaching and Placing Science Students. Thinking, 49(8), 411–416.
Vazquez, J., Sanz-Bobi, M. a, Palacios, R., & Arenas, A. (2002). State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles. 7th European Workshop on Thermoelectrics, 17, 1-9.
Wenning, C. J. (2011). The Levels of Inquiry Model of Science Teaching. J. Phys. Tchr. Educ, 6(2): 9-16.
DOI: http://dx.doi.org/10.26418/jpmipa.v13i1.47821
Refbacks
- There are currently no refbacks.
Abstracted/Indexed by:
PUBLISHED BY:
Fakultas Keguruan dan Ilmu Pendidikan Universitas Tanjungpura
Jurnal Pendidikan Matematika dan IPA is licensed under a Creative Commons Attribution 4.0 International License