STUDI POTENSI TARGET RESEPTOR SENYAWA PADA BAWANG PUTIH MENGGUNAKAN SWISS TARGET PREDICTION

Muhammad Andre Reynaldi

Abstract


Senyawa bioaktif bawang putih, seperti alisin, alliin, dan diallyl sulfida, telah dilaporkan memiliki berbagai aktivitas farmakologis, termasuk efek antiinflamasi dan antikanker. Namun, pemahaman mengenai target reseptor spesifik dari senyawa-senyawa ini masih terbatas. Penelitian ini bertujuan untuk mengidentifikasi target reseptor potensial dari senyawa tersebut menggunakan pendekatan in silico melalui platform Swiss Target Prediction berbasis web. Struktur senyawa dianalisis untuk memprediksi interaksinya dengan reseptor manusia, memberikan wawasan awal tentang mekanisme kerja potensialnya. Hasil menunjukkan bahwa alisin memiliki probabilitas interaksi tinggi dengan Epidermal Growth Factor Receptor (EGFR) dan Nitric Oxide Synthase, mendukung efek antiinflamasi dan antikankernya. Alliin menunjukkan interaksi dengan reseptor neurotransmiter, sedangkan diallyl sulfida berpotensi memengaruhi reseptor hormonal. Kesimpulannya, penelitian ini menyediakan landasan awal bagi pengembangan agen terapeutik berbasis bawang putih yang lebih efektif dan terarah.

Full Text:

PDF

References


Daftar Pustaka

Nickavar B. Effect of organosulfur compounds from different garlic preparations on hyperlipidemia: An in-silico approach. Biointerface Res Appl Chem. 2022;12(3):4048–61.

Nakamoto M, Kunimura K, Suzuki J-I, Kodera Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp Ther Med. 2020 Feb;19(2):1550–3.

Reynaldi MA, Riza H, Luliana S. DOCKING STUDY OF ALLICIN WITH SULFONYLUREA RECEPTOR 1, COMPLEX 1 AND PPARγ RECEPTOR ON INSULIN RESISTANCE. Int J Pharm Pharm Sci. 2018;

NaAllah A, Ayipo YO, Komolafe DI, Solihu S, Bamidele B, Alabi MA, et al. Phytochemical screening and in silico pharmacological profiling of ethanolic extract of Aframomum melegueta for prostate carcinoma. J Appl Pharm Sci. 2021;11(7):132–45.

Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. Editorial: In silico Methods for Drug Design and Discovery. Front Chem [Internet]. 2020;8. Available from: https://www.frontiersin.org/article/10.3389/fchem.2020.00612

Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, et al. Admetlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform [Internet]. 2018;10(1):1–11. Available from: https://doi.org/10.1186/s13321-018-0283-x

Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res [Internet]. 2019;47(W1):W357–64. Available from: https://doi.org/10.1093/nar/gkz382

Daina A, Zoete V. Testing the predictive power of reverse screening to infer drug targets, with the help of machine learning. Commun Chem [Internet]. 2024;7(1):105. Available from: https://doi.org/10.1038/s42004-024-01179-2

Gfeller D, Michielin O, Zoete V. Shaping the interaction landscape of bioactive molecules. Bioinformatics [Internet]. 2013;29(23):3073–9. Available from: https://doi.org/10.1093/bioinformatics/btt540

Pan J, Li L-P, You Z-H, Yu C-Q, Ren Z-H, Chen Y. Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method. Molecules. 2021 Sep;26(17).


Refbacks

  • There are currently no refbacks.