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Abstract– This paper addresses the design problem of
robust H2 output feedback controller for damping power
system oscillations. Sufficient conditions for the
existence of output feedback controllers with norm-
bounded parameter uncertainties are given in terms of
linear matrix inequalities (LMIs). Furthermore, a
convex optimization problem with LMI constraints is
formulated to design the output feedback controller
which minimizes an upper bound on the worst-case H2

norm for a range of admissible plant perturbations. The
technique is illustrated with applications to the design of
stabilizer for a single-machine infinite-bus (SMIB)
power system. The LMI based control ensures adequate
damping for widely varying system operating.
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1.  Introduction

Power system stabilizers (PSSs) have been widely
used as supplementary controllers to provide extra
damping for synchronous generators in electrical power
system. In spite of availability of various innovative
designs, the fixed gain, lead-lag compensation-type of
stabilizer has been the most popular with the electrical
utilities. PSSs enhance the power system stability limit
by enhancing the system damping of low frequency
oscillations associated with the electro- mechanical
modes [1]. Conventional power system stabilizers
(CPSSs) are used to damp out small signal oscillations
and they are designed based on a model which is
linearized around a particular operating point.
Conventional design tunes the gain and time constants
of the PSS, which are mostly lead-lag compensators,
using modal frequency techniques. Such designs are
specific for a given operating point; they do not
guarantee robustness for a wide range of operating
conditions.

In the last few years, robust control technique has
been applied to power system controller design to
guarantee robust performance and robust stability, due to
uncertainty in plant parameter variations. Some of those
efforts have been contributed to design robust
controllers for damping power system oscillations [2-4].
The main advantage of H∞ optimization methods is that
the model uncertainties can be accounted for at the
design stage. Normally, the problem is formulated as a
weighted mixed sensitivity design and solved by a

Riccati approach. In power system damping control
design, the main objective is to improve the damping
ratio of the electromechanical modes over widely
varying operating conditions.

Design methods based on the H norm of the closed-
loop transfer function have gained popularity, because
unlike H2 methods (best known as LQG), they offer a
single frame- work in which to deal both with
performance and robustness. On the other hand, since an
H2 cost function offers a more natural way of
representing certain aspects of the system performance,
improving the robustness of H2 -based design methods
against perturbations of the nominal plant is a problem
of considerable importance for practical applications [5].
In the robust H2 approach, the controller is designed to
minimize an upper bound on the worst-case H2 norm for
a range of admissible plant perturbations.

With the development of numerical algorithms for
solving linear matrix inequality (LMI) problems in the
last few years, the LMI approach have emerged as a
useful tool for solving a wide variety of control
problems [6, 7]. An LMI-based controller design for
damping power system oscillation has been discussed in
several recent papers [8-11]. In this paper, we consider
the design problem of robust H2 output feedback
controller for damping power system oscillations. We
obtain sufficient conditions for the existence of output
feedback controllers with norm-bounded parameter
uncertainties in terms of linear matrix inequalities
(LMIs). The efficiency of an LMI-based design
approach as a practical design tool is illustrated with
applications the design of stabilizers for a SMIB power
system.

2.  Robust H2 controller design

Consider the linear plant P with input u, disturbance
w, performance output z and the measurement signal y.
The input is generated by dynamic output feedback,
using the controller K. The signal z is the performance
associated with the H2 criterion. The state space
representation of the controlled system with parameter
uncertainties can be writen as follows:
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where A, B1, B2, C1, C2, D12, and D21 are known constant
real matrices of appropriate dimensions, A , 1B ,

and 2B are matrix-valued functions representing time-

varying parameter uncertainties in the system models.
The parameter uncertainties considered here are

assumed to be norm bounded and of the form [12]:
])[(][ 32121 EEEtDBBA  (2)

where D, E1, E2, and E3 are known constant real
matrices of appropriate dimensions, which represent the

structure uncertainties, and jiRt  )( is an unknown

matrix function with Lebesque measurable elements and
satisfies

Itt  )()(T (3)

in which I denotes the identity matrix of appropriate
dimension.

The illustration of the controlled system is shown in
Figure 1. Furthermore, w represents an exogenous signal
and Hzw(s) denotes the transfer function from w to z. The
basic problem to be formulated is the stabilizability
problem with respect to the strictly proper controller K
with state space realization
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satisfies the following control objective:
1) The closed-loop system (5) is asymptotically stable.
2) The performance function

2zwH is minimized.

Associated to this closed-loop system we introduce
the following matrix functions:
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The first two are linear, whereas the third one is
nonlinear. In the sequel, when no confusion is possible,
they are simply written as H, G and Z, respectively.

Theorem 1 [13]. The system (1) can be stabilized by a
dynamic output feedback (5) if, and only if, there exist

symmetric matrices nnRYX , and matrices nnRM  ,
nmRL  , rnRF  as solution to the nonlinear

inequalities
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From the Lyapunov theorem, the closed-loop matrix A
is asymptotically stable if, and only if, there exists

0 TPP of dimension nn 22  such that

0 APPAT (13)

By defining nnRT 22  and letting P and 1P be
partitioned according to nn dimensioned blocks
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so that (12) must hold.

The regularity assumption can be made with no loss of
generality when working with strict inequalities since
one can always induced a small regular perturbation on
matrix V to achieve regularity. With the following
change of variables:

TT
KK
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and multiplying (13) on the left by TT and on the right
by T , one gets the necessary and sufficient condition
(11).
From the above theorem, provided matrix A in (6) is
Hurwitz, the square of this norm can be expressed in
terms of the solution to a Lyapunov equation such that
this minimization problem with respect to the triplet of
variable ),,( KKK CBA is given by

min  0:][  CCAPPABPBtrace TTT (16)

The equality constraint in the problem above can be
replaced by an inequality using the nondecreasing
property of Lyapunov equation solutions. So, using the

Schur complement, the partitions for matrices P, 1P
and the change of variables (15), the problem (16) is
given by LMI formulation as follows:
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where X, F, Y, L and W are the optimization variables.
The controller matrices are recovered from the following
equations

XYIUV T  (20)
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Figure 1. Generalized Plant

3. Dynamic model of the power system

In this study, a single-machine infinite-bus (SMIB)
power system [11, 14] as shown in Figure 2 is
considered. The IEEE type-ST1 excitation system with
PSS is shown in Figure 3. Neglecting the effect of
damper winding, stator transient and resistance, the
synchronous machine together with its excitation system
is modeled using the following 4th order non-linear
dynamic equations:
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To permit analysis and control of the power system,
the model is linearised around the operating point. The

state variables of this model are fdq EE  ,,, ' ,

respectively, angular speed, rotor angle, voltage behind
transient, and excitation voltage. In this study, we use
only  as a feedback input signal. The power input to
the generator shaft is assumed constant, the network is
represented by a set of algebraic equation and the load is
modeled by constant impedance.

Figure 2. A SMIB Power System

Figure 3. IEEE Type-ST1 Excitation System with PSS

4.  Simulation results

A typical single-machine infinite-bus (SMIB) power
system [11, 14] is chosen for analysis of the proposed
controller. The machine data and the exciter data are
shown in Tables 1 and 2, respectively. The data for
CPSS constants is given in Table 3.

The operating condition: Pe = 1.0 pu, Qe = 0.015 pu
and vt = 1.05 pu are chosen as the nominal operating
condition and other operating points are regarded as
perturbations of the nominal system. Four different
loading conditions representing nominal, heavy, light,
and leading power factor (PF) are considered as given in
Table 4. The eigenvalues of the nominal system are
0.295j4.96 and –10.4j3.28. It is observed that the
electromechanical mode (characterized by the pair of
eigenvalues 0.295j4.96) is negatively damped and the
eigenvalues for this mode should be shifted leftward to
more desirable locations into the left half s-plane.

The technique described in Section 2 was applied to
the design of stabilizer (proposed PSS) for the study
system. By employing Matlab LMI Control Toolbox [7]
to solve the LMIs (17)-(19), we obtain the
corresponding feasible solution for the 4th order
controller K in the form (20)-(23) with the transfer
function



Jurnal ELKHA Vol.3, No.1, Maret 2011

9

)54619.18)(023.6)(11.31(

)6.12021)(753.4(7155
2

2





ssss

sss
K (28)

For evaluation purposes, the performance of the
system with the proposed controller was compared to
the CPSS and H PSS (standard HPSS). A small
disturbance of 10% step increase in the reference
voltage (Vref) was applied to the SMIB power system at
four different operating conditions. Simulation results
shown in Figures 4-7 illustrate the performance and
robustness of the proposed PSS under different
operating conditions. It can be seen that the proposed
PSS yields the better dynamic performance and more
robust against model uncertainties.

Tabel 4. Operating Conditions

For completeness and verifications, all controllers
were tasted at the following disturbances and loading
conditions.
(a) Nominal loading (P,Q) = (1.0,0.015) pu with 3LG fault,
(b) Heavy loading (P,Q)  = (1.2,0.3) pu with 3LG fault.

A 3LG (Three-phase-to ground) fault is assumed; one
of the transmission lines (as shown in Figure 2) met a
3LG fault and the circuit breaker operated. The
simulation results for cases (a) and (b) as shown in
Figure 8 and Figure 9, respectively. Figure 9 shows that
the CPSS fails to stabilize the system with disturbance
(b), the proposed PSS provide good damping
characteristics and system is stable under this
disturbance. It is clear that the proposed PSS exhibits
better damping properties and guarantees robust stability
of the power systems.

Figure 4. Responses with 10% Step in refV for Case 1

Figure 5. Responses with 10% Step in refV for Case 2

Figure 6. Responses with 10% Step in refV for Case 3

Figure 7. Responses with 10% Step in refV for Case 4
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Figure 8. Responses with Fault Disturbance for Case (a)

Figure 9. Responses with Fault Disturbance for Case (b)

5.  Conclusions

This paper has presented the design problem of
robust H2 output feedback controller for damping power
system oscillations. Sufficient conditions for the
existence of output feedback controllers with norm-
bounded parameter uncertainties are given in terms of
linear matrix inequalities.
In the design, the proposed PSS uses only a rotor speed
deviation (  ) of generator as the feedback input
signal. Moreover, the practical realization in power
systems can be easily implemented. The performance of
the proposed stabilizer on a SMIB power system are
seen to be robust over a wide range of operating
conditions. Finally, simulation results show the
effectiveness and robustness of the proposed stabilizer to
enhance the damping of low frequency oscillations.
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