Modifikasi Osilasi Rabi Pada Nanoparticle Heterodimer: Pengaruh Jarak antar Partikel dan Intensitas Medan Iluminasi

Bintoro Siswo Nugroho, Yudha Arman

Abstract


Telah dilakukan studi teoretis untuk mempelajari osilasi Rabi pada heterodimer yang terdiri dari semiconductor quantum dot (SQD) dan metal nanoparticle (MNP). SQD dimodelkan sebagai two-level system dan ditinjau dengan formalisme density matrix sedangkan MNP dimodelkan secara klasik dan dikarakterisasi dengan nilai polarisabilitasnya. Respon optik diamati untuk sistem yang diiluminasi dengan medan osilatif yang terpolarisasi linear pada arah paralel sumbu penghubung SQD-MNP. Persamaan gerak density matrix sistem diselesaikan secara numerik menggunakan Runge-Kuta-Fehlberg (RKF 45).  Hasil yang diperoleh menunjukkan bahwa hibridisasi SQD-MNP dapat menimbulkan interaksi yang menyebabkan terjadinya pergeseran frekuensi transisi resonansi dan perubahan laju dephasing pada sistem. Efek kopling tersebut terlihat dominan dan menjadi faktor utama dalam modifikasi osilasi Rabi ketika sistem dieksitasi dengan laser berintensitas rendah, I = 1 W/cm^2. Hibridisasi juga menyebabkan timbulnya medan induksi dari MNP yang berperan pada modifikasi osilasi Rabi saat sistem dieksitasi dengan laser berintensitas lebih tinggi, I = 10 W/cm^2. Efek modifikasi yang diamati dapat dikontrol dengan mengubah jarak pisah SQD-MNP.

Keywords


nanohybrid, osilasi Rabi, quantum dot, metal nanoparticle, density matrix

Full Text:

PDF

References


Quake, S.R., From micro- to nanofabrication with soft materials, Science, 290(5496), pp 1536–1540, 2000.

Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G., and Whitesides, G. M., New Approaches to nanofabrication: molding, printing, and other techniques, Chem. Rev., 105(4), pp 1171–1196, 2005.

Kim, T.Y., Park, N.M., Kim, K.H., Sung, G.Y., Ok, Y.W., Seong, T.Y., and Choi, C. J., Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films, Appl. Phys. Lett., 85(22), pp 5355–5357, 2004.

Park, N.M., Choi, C.J., Seong, T.Y., and Park, S.J., Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride, Phys. Rev. Lett., 86(7), pp 1355–1357, 2001.

Liu, C., Xu, X., Rettie, A. J. E. , Mullins, C.B., and Fan, D.L., One-step waferscale synthesis of 3-D ZnO nanosuperstructures by designed catalysts for substantial improvement of solar water oxidation efficiency, J. Mater. Chem. A, 1(28), pp 8111–8117, 2013.

Viste, P., Plain, J., Jaffiol, R., Vial, A., Adam, P. M., and Royer, P., Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources., ACS nano, 4(2), pp 759–64, 2010.

Fu, M., Wang, K., Long, H., Yang, G., Lu, P., Hetsch, F., Susha, A.S., and Rogach, A.L., Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot – metal nanoparticle structures, Appl. Phys. Lett., 100(6), pp 063117, 2012.

Li, J.B. , Kim, N.C., Cheng, M.T., Zhou, L., Hao, Z.H., and Wang, Q.Q. , Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems., Opt. Express, 20(2), pp 1856–1861, 2012.

Malyshev, A.V. and Malyshev, V.A., Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer, Phys. Rev. B, 84(3), pp.035314, 2011.

Nugroho, B.S., Iskandar, A.A. , Malyshev, V.A., and Knoester, J. , Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time, J. Chem. Phys., 139(1), pp.014303, 2013.

Kamada, H., Gotoh, H., Temmyo, J., Takagahara, T., and Ando, H., Exciton rabi oscillation in a single quantum dot, Phys. Rev. Lett., 87(24), pp 246401, 2001.

Qiao, B. and Jiayin, G., The Rabi oscillation in subdynamic system for quantum computing, Adv. Theor. Math. Phys., 2015(0), pp 1-7, 2015.

Bellac, M.L., A Short introduction to quantum information and quantum computation, Cambridge University Press, 2006.

Sadeghi, S.M., The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems., Nanotechnology, 20(22), pp 225401, 2009.

Yulyanto, Y. and Nugroho, B.S., Analisis respons optik semiconductor quantum dot sistem three-level bertipe V, POSITRON, 8(1), pp 1–7, 2018.

Scholl, J.A., Koh, A.L., and Dionne, J.A., Quantum plasmon resonances of individual metallic nanoparticles, Nature, 483(7390), pp.421–427, 2012.

Maier, S.A., Plasmonics: fundamentals and applications, Springer Science & Business Media, 2007.

Bohren, C.F. and Huffman, D.R., Absorption and scattering of light by small particles, Wiley & Sons, New York, 1983.

Blum, K., Density matrix theory and applications, Springer Science & Business Media, 2012.

Artuso, R.D., Bryant, G.W., Garcia-Etxarri, A., and Aizpurua, J., Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems, Phys. Rev. B, 83(23), pp 235406, 2011.

Derkachova, A., Kolwas, K., and Demchenko, I., Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres, Plasmonics, 11(3), pp 941–951, 2016.




DOI: http://dx.doi.org/10.26418/positron.v8i2.29366

Refbacks

  • There are currently no refbacks.


PUBLISHED BY
IN COOPERATION WITH

Jurusan Fisika
Fakultas Matematika dan Ilmu Pengetahuan Alam
Universitas Tanjungpura
 Physical Society of Indonesia
Cabang Kalimantan Barat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.