The Mass Calculation of Solitary Wave Solution of the One-Dimensional Burgers Equation

Teguh B. Prayitno


We have calculated the mass of the solitary wave solution of the one-dimensional Burgers equation by integrating the Hamiltonian density of its equation based on the formulation of the classical field theory. To use this method, we first construct the Lagrangian density in order to obtain the Hamiltonian density by initially introducing the ansatz function of the appropriate field. In this paper, we have obtained that the mass of the solitary of the one-dimensional of Burgers equation is literally divergent.


Solitary wave, Burgers equation.

Full Text:



A. C. Scott, F. Y. F. Chu, and D. W. Mclaughlin, Proceedings of the IEEE, Vol. 61, No. 10, 1973.

P. G. Drazin and R. S. Johnson, Solitons: an Introduction, New York: Cambridge University Press, 2002.

J. M. Burgers, The Nonlinear Diffusion Equation, Boston: D. Rendel Publishing Company, 1974.

N. A. Kudryashov and D. I. Sinelshchikov, arXiv: 0912.1542v1, 2009.

Z. Feng, Phys. Lett. A 293 (2002) 57.

J. L. V. Lewandowski, International Journal of Numerical Analysis and Modeling 3 (2006) 80.

Ch. S. Rao and E. Saryanarayana, International Journal of Nonlinear Science 9 (2010) 290.

H. J. Wospakrik, J. Theor. Comput. Stud. 4 (2005) 0308.

A. Acus, arXiv : hep-ph/9901240v1, 1999.

J. Schecter and H. Weigel, arXiv : hep-ph/9907554v1, 1999.

M. Hadi and H. J. Wospakrik, arXiv : hep-ph/1007.0888v1, 2010.

T. B. Prayitno, will be published in Jurnal Fisika, Universitas Negeri Semarang, 2012.

L. H. Ryder, Quantum Field Theory, 2nd ed., Cambridge: Cambridge University Press, 1996.



  • There are currently no refbacks.


Jurusan Fisika
Fakultas Matematika dan Ilmu Pengetahuan Alam
Universitas Tanjungpura
 Physical Society of Indonesia
Cabang Kalimantan Barat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.