Pengenalan Pola Sidik Jari Menggunakan Multi-Class Support Vector Machine

Agus Andreansyah, Rika Favoria Gusa, Muhammad Jumnahdi

Abstract


In exposing criminal acts, it is necessary to have a concrete piece of evidence, one of which is by using the role of fingerprints. Police fingerprint identification uses supporting tools such as the INAFIS Portable System (IPS). The process of reading fingerprints using this IPS tool, usually decreases image quality which causes obstacles in reading or analyzing fingerprint patterns. Nowadays digital image processing techniques have been widely used to conduct analysis and pattern recognition. This of course, can be used to perform fingerprint pattern recognition based on texture characteristics. In this study, a system was created that was able to recognize the types of fingerprint patterns as a form of digital technology development (image processing). In this analysis system research, the Gray Level Co-Occurence Matrix (GLCM) method is used by utilizing feature feature extraction by paying attention to the pixel relationship and Multi-Class Support Vector Machine (Multi-SVM) as an introduction to fingerprint pattern types. The data used in this study were fingerprint images of scanning results from IPS tools in the form of arch, left loop, plain whorl, right loop, and twinted loop patterns. Testing this analysis system produces varying degrees of success. The average success rate on this system uses training data which is 91.6% with the highest percentage success rate of 100% in the type of arch, left loop, and plain whorl pattern. While the average success using test data is 66% with the highest percentage success rate of 100% in the arch pattern type.

Keywords


Pattern Recognition, Fingerprints, INAFIS portable system, Multi-SVM.

Full Text:

PDF

References


Anonim, 2019, Angka Kriminalitas Naik, Polri Fokus Empat Kasus Kejahatan, CNN Indonesia, 17 Mei 2019, https://www.cnnindonesia.com/nasional/20190517062637-12-395609/angka-kriminalitas-naik-polri-fokus-empat-kasus-kejahatan

Anonim, 2019, Ira Handoko Tewas Jadi Korban Begal Terbaru 2019 di Batam Pelaku Masih Remaja, Batam Tribunnews, 17 Mei 2019, https: // batam. tribunnews.com / 2019 / 05 / 17 / ira-handoko-tewas-jadi-korban-begal-terbaru-2019-di-batam-pelaku-masih-remaja

Indonesia, Undang-Undang tentang Kitab Undang-Undang Hukum Acara Pidana, UU No. 8 Tahun 1981, LN No. 76 Tahun 1981, Psl. 184.

Ardhianto, E, 2010, Pengolahan Citra Digital untuk Identifikasi Ciri Sidik Jari Berbasis Minutiae, Fakultas Teknologi Informasi, Universitas Stikubank Semarang, Dinamika Informatika, Vol II No 1.

Andono, P.N., dan T. Sutojo, Mulyono, 2007, Pengolahan Citra Digital, Edisi 1, Penerbit Andi, Yogyakarta.

Gusa, Rika F, 2013, Pengolahan Citra Digital untuk Menghitung Luas Daerah Bekas Penambangan Timah, Jurnal Nasional Teknik Elektro, Vol 2 No 2 September.

Wijaya, M.Ch, dan Agus Prijono, 2007, Pengolahan Citra Digital Menggunakan Matlab Image Processing Toolbox, Penerbit Informatika, Bandung.

Nugroho, A.S, Arief Budi Witarto, dan Dwi Handoko, 2003, Support Vector Machine Teori dan Aplikasinya dalam Bioinformatika, IlmuKomputer.com.

Purnomo, W, 2011, Klasifikasi Sidik Jari Menggunakan Support Vector Mchine dengan Feature Berbasis Minituae Menggunakan Metode Region, Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengentahuan Alam, Institut Pertanian Bogor, Bogor.

Neneng, Yusra Fernando, 2017, Klasifikasi Jenis Daging Berdasarkan Analisis Citra Tekstur Gray Level o-Occurence Matrix (GLCM) dan Warna, Seminar Nasional Sains dan Teknologi, Universitas Muhammadiyah Jakarta, Jakarta.

Syauqi, R, 2011, Pengenalan Sidik Jari Manusia dengan Matriks Kookurensi Aras Keabuan (Gray Level Co-Occurence Matrix). Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro, Semarang.

Kurniawan, N.Z., Susijanto Tri Rasmana, dan Yosefine Triwidyastuti, 2016, Identifikasi Jenis Penyakit Daun Tembakau Menggunakan Metode Gray Level Co-Occurence Matrix dan Support Vector Machine, Jurnal Of Control and Network Systems, Vol. 5, halaman 158-163.




DOI: http://dx.doi.org/10.26418/elkha.v11i2.34055

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Agus Andreansyah

 

Editorial Office/Publisher Address:
Editor Jurnal Elkha, Department of Electrical Engineering, Faculty of Engineering, Universitas Tanjungpura,
Jl. Prof. Dr. Hadari Nawawi, Pontianak 78124, Indonesia

website:http://jurnal.untan.ac.id/index.php/Elkha
email : jurnal.elkha@untan.ac.id

Assiciated with :

 

MoU FORTEI - ELKHA



                                                  

 

                                                           

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.