Pemodelan Sistem Dengan Metoda Identifikasi Parameter Menggunakan Pendekatan Model ARX (Autoregressive Exogenous)

Ade Elbani


Abstract – Systems that exist in nature are a combination of linear and nonlinear elements, and there are still many other factors that affect the linearity of the system. System models are very difficult to obtain with mathematical calculations, and also many neglected elements, especially nonlinear elements. So that the resulting model becomes less effective to be applied directly in the field. In addition to these methods, there are other modeling methods, namely the identification method. This identification method is carried out on the basis of the input signal and output of the system to be modeled. All of that is considered to be an integrated system (black box). The model structure approach that will be used is ARX (Autoregressive Exogenous), which is a linear model structure, and parameter estimation algorithm uses the least square. Based on the analysis that has been done, the system is linear, there is no noise, has a time delay with off-line data pairs. From the modeling process carried out, order of the system and model parameters are obtained, so that a good system model is obtained. The model obtained, then can be used for other purposes, for example for the purposes of control, analysis needs, and for other simulation purposes.


Identification Method, Black Box, ARX, Least Square.

Full Text:



Dharma Aryani, Muhammad Thahir, Sistem Identifikasi Model Dinamik Proton Exchange Membrane Fuel Cell (PEMFC) Dalam Struktur Blok Wiener, Prosiding Seminar Hasil Penelitian (SNP2M) 2018 (pp.246-251).

Hanif Ryanas Putra, Yusuf Bilfaqih, Optimalisasi Pembangkit Listrik Pada PLTG pada PT. Indonesia Power Up Grati Pasuruan, Jurnal Teknik ITS Vol. 6, No. 2 (2017), 2337-3520 (2301-928X Print)

Ainie Khuriati RS, Identifikasi dan Perancangan Pengendali PID Menggunakan Penduga ARX Sistem Pemanas Udara, Jurnal Fisika Indonesia, Vol. 7, No. 51, pp. 1 - 5, Desember 2013.

G.D. Nusantoro, M. Aziz, Teguh Busi W, Identifikasi Sistem Plant Suhu Dengan Metode Recursive Least Square, Jurnal EECCIS, Vol. 6, No. 1, pp. 67-74, Juni 2012.

Konan J, Yamashita Y, Tanaka T , Tashiro A, Daiguji M, “ Practical application of model identification based on ARX models with transfer functions , Control Engineering Practice, 2012,

Arjoni Amir, Pemodelan Reaktor Riset Kartini Menggunakan Model ARX, Prima, Vol. 3, No. 6, pp. 56-61, November 2006.

R. Haber and L. Kevieczky, Nonlinier Sistem Identification Inpput-Output Modeling Approach, volume 1: Nonlinier Sistem Parameter Identification. 1999.

R. Haber and L. Kevieczky, “Nonlinier Sistem Identification Inpput-Output Modeling Approach”, volume 2: Nonlinier Sistem Parameter Identification, 1999.

Howard T,S Fan Bengt C, S, B “ Least Squares Parameter Estimation of Continuous-Time ARX Models from Discrete-Time Data” IEEE Transactions On Automatic Control, Vol. 42, No. 5, May 1997

Rolf, Johansson, Sistem Modelling and Identification, Englewood Cliffs: Printice Hall Inc, 1993.

R. Haber, H. Unbehauen, Structure Identification of nonlinier Dynamic Sistem – A Survey on Input/output Aproaches, Automatica, 1990, Vol. 26, No. 4, pp.651-677. 1990.

Landau, ID, “Sistem indentification and Control design”, Englewood Cliffs: Printice Hall Inc. 1990.

Ljung, Lennart, “Sistem Identification: Theory for the User”, Printice Hall Inc, Englewood Cliffs, 1987.



  • There are currently no refbacks.

Copyright (c) 2019 Ade Elbani


Editorial Office/Publisher Address:
Editor Jurnal Elkha, Department of Electrical Engineering, Faculty of Engineering, Universitas Tanjungpura,
Jl. Prof. Dr. Hadari Nawawi, Pontianak 78124, Indonesia

email :

Assiciated with :






This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.